推荐系统领域,over-uniform和oversmoothing问题
在推荐系统领域,“over-uniform” 和 “oversmoothing” 是与模型性能和推荐结果相关的两个概念,它们通常用于描述模型的行为和性能问题。以下是它们的区别:
Over-Uniform(过于一致):
Over-Uniform 推荐系统指的是系统过于依赖热门或流行的物品,导致推荐结果缺乏多样性。
这可能发生因为推荐算法倾向于为大多数用户推荐相同的热门物品,而忽视了个性化的需求。
Over-Uniform 推荐系统可能会导致用户接收到相似的推荐,限制了他们对新事物的探索。
Oversmoothing(过度平滑):
Oversmoothing 推荐系统指的是模型过度平滑了用户和物品之间的关系,以至于推荐结果过于保守和相似。
这通常发生在采用协同过滤方法时,当模型对用户-物品交互数据进行平滑处理,以克服数据稀疏性和噪声时。
Oversmoothing 可能会导致推荐结果缺乏多样性,用户得到的推荐很可能与他们以前的行为相似,而忽视了可能的新兴趋势或个性化需求。
总的来说,over-uniform 强调了过度依赖热门物品的问题,而 oversmoothing 强调了过度平滑导致推荐结果不够个性化和多样性的问题。在推荐系统设计中,平衡这两个问题非常重要,以提供用户既有广泛选择,又有个性化推荐的体验。
相关文章:
推荐系统领域,over-uniform和oversmoothing问题
在推荐系统领域,“over-uniform” 和 “oversmoothing” 是与模型性能和推荐结果相关的两个概念,它们通常用于描述模型的行为和性能问题。以下是它们的区别: Over-Uniform(过于一致): Over-Uniform 推荐系…...
360测试开发技术面试题目
最近面试了360测试开发的职位,将面试题整理出来分享~ 一、java方面 1、java重载和重写的区别 重载overloading 多个方法、相同的名字,不同的参数 重写overwrite 子类继承父类,对方法进行重写 2、java封装的特性 可以改变内部实现,…...
智能井盖传感器扣好“城市纽扣”,让市民脚下更有安全感
随着城市化进程的快速推进,城市基础设施的维护和管理面临着日益严峻的挑战。作为城市生命线的重要组成部分,城市井盖在保障城市安全和稳定运行方面具有举足轻重的地位。然而,日益繁重的城市交通压力使得井盖的维护和管理问题逐渐显现。 城市井…...
1 随机事件与概率
首先声明【这个括号内的都是批注】 文章目录 1 古典概型求概率1.1 随机分配问题【放球】例子 1.2 简单随机抽样问题【取球】例子 2 几何概型求概率例子 3 重要公式求概率3.1 对立3.2 互斥3.3 独立3.4 条件(要做分母的必须大于0)例子 3.5 不等式或包含例…...
计算机视觉--通过HSV和YIQ颜色空间处理图像噪声
计算机视觉 文章目录 计算机视觉前言一、实现步骤二、实现总结 前言 利用HSV和YIQ颜色空间处理图像噪声。在本次实验中,我们使用任意一张图片,通过RGB转HSV和YIQ的操作,加入了椒盐噪声并将其转换回RGB格式,最终实现对图像的噪声处…...
WPF中prism模块化
1、参照(wpf中prism框架切换页面-CSDN博客)文中配置MainView和MainViewModel 2、模块其实就是引用类库,新建两个类库ModuleA ModuleB,修改输出类型为类库,并配置以下文件: ModuleA ModuleAProfile ModuleB Module…...
MyBatis基础之注解与SQL 语句构建器
文章目录 注解实现简单增删改查SQL 语句构建器SelectProvider举例 注解实现简单增删改查 在 MyBatis 的核心配置文件中,你需要配置的不是 mapper 映射文件,而是 Mapper 接口所在的包路径。 <!-- 在配置文件中 关联包下的 接口类--> <mappers&…...
Spring Boot项目搭建流程
Spring Boot是一款基于Spring Framework的开源框架,用于快速构建独立的、可运行的、生产级的Spring应用程序。它通过自动化配置、减少样板代码和默认的项目结构,极大地简化了Spring应用程序的开发过程。本文将详细介绍Spring Boot项目搭建的流程。 一、…...
VSCode插件开发之contributes和命令
VSCode插件开发 package.jsoncontributesconfigurationconfigurationDefaultscommandsmenuskeybindingsviewsviewsContainerscustomEditors 命令回调参数函数编辑器命令执行命令获取所有命令复杂命令 package.json contributes 之前说到 package.json 是 vscode 扩展的清单文…...
适用于Windows的远程传输大文件软件!
AnyViewer可在设备之间快速的远程传输文件,并支持远程传输大文件,传输速度可达10MB/S,同时,还可以传输单个文件不超过1TB的文件,并它基于椭圆曲线加密(ECC)加密,可保护您的文件不被…...
Hydra参数
kali的hyda参数 参数: hydra [[[-l LOGIN|-L FILE] [-p PASS|-P FILE]] | [-C FILE]] [-e ns][-o FILE] [-t TASKS] [-M FILE [-T TASKS]] [-w TIME] [-f] [-s PORT] [-S] [-vV] server service [OPT] -R 继续从上一次进度接着破解。 -S 采用SSL链接。 -s PORT 可通…...
R语言的计量经济学实践技术应用
计量经济学通常使用较小样本,但这种区别日渐模糊,机器学习在经济学领域、特别是经济学与其它学科的交叉领域表现日益突出,R语言是用于统计建模的主流计算机语言,在本次培训中,我们将从实际应用出发,重点从数…...
基于Springboot实现体质测试数据分析平台管理系统项目【项目源码+论文说明】
基于Springboot实现体质测试数据分析平台系统演示 摘要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,体质测试数据分析及可视化设计当然也不能排除在外。体质测试数据分析及…...
JavaScript 严格模式
JavaScript 严格模式是一种在 JavaScript 编程中使用的特殊模式。它提供了一种更严格的语法和错误检查,以帮助开发者编写更可靠、更安全的代码。 使用严格模式的方法是在代码文件或函数的顶部添加如下语句: "use strict"; 作用:…...
安全与隐私:直播购物App开发中的重要考虑因素
随着直播购物App的崭露头角,开发者需要特别关注安全性和隐私问题。本文将介绍在直播购物App开发中的一些重要安全和隐私考虑因素,并提供相关的代码示例。 1. 数据加密 在直播购物App中,用户的个人信息和支付信息是极为敏感的数据。为了保护…...
Redis cluster 集群
redis集群redis集群是一个提供在多个redis节点间共享数据的程序集,redis集群可以支持多个master Redis集群支持多个master,每个master又可以挂载多个slave 读写分离、支持数据的高可用、支持海量数据的读写存储操作由于Cluster自动Sentinel的故障转移机制ÿ…...
服务器与网站部署知识体系目录
1.网站部署必备知识与实践操作 服务器全套基础知识:包含基本概念,作用,服务器选择,服务器管理等域名相关基础知识普及域名备案流程(个人备案,腾讯云 / 阿里云)将网站域名访问从http升级到https…...
解读提示工程(Prompt Engineering)
提示工程(Prompt Engineering),也称为上下文提示,是一种通过不更新模型的权重/参数来引导LLM行为朝着特定结果的方法。这是与AI有效交流所需结果的过程。提示工程可以用于各种任务,从回答问题到算术推理乃至各种应用领…...
Servlet的部署与安全
1 Servlet 部署 Servlet规范关于各个东西该放在哪里有许多严格的规则。 1.1 WAR war文件代表Web归档(Web Archive),war实际就是一个JAR,只不过扩展名是.war而不是.jar。 其采用了一种可移植的压缩形式,把整个Web应用结构(去掉…...
2023版IDEA的下载、安装、配置、快捷键、模板、插件与使用
🎉 为什么会有这篇教程:熟悉 IDEA 并能灵活熟练使用 IDEA 能极大提高您的开发效率!!! 📍 本文教程基于当前 idea 的最新版本 2023.2.2。 📍 本文教程的所有操作图片均是实操测试截图或 gif 动态…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
