计算机导论实验——Linux基础入门
使用Xshell登录 Linux 主机
linux命令:
cd:去哪里
pwd:在哪里
ls:查看当前有什么文件
mkdir:创建新目录
cp:复制
cat:连接或显示文件
rm:删除
mv:用于移动或重命名文件和目录
chmod:用于更改文件或目录的权限
tar:用于压缩和解压文件和目录
cd abc或者cd ./abc:使用相对路径,相对于当前目录
cd /root/abc:使用绝对路径,使用绝对路径时必须写完整绝对路径,否则报错
ls -a:显示所有文件和目录,包括隐藏文件
ls -l:查看文件和目录的详细信息,简写为ll
ls -la或者ls -al:查看所有文件和目录的详细信息
从本地上传文件到服务器:
1. 在Xshell中新建本地shell,在本地shell中进行操作
2. 命令:scp c:/abc/1234.txt root@101.133.130.109:/root
scp 文件的本地地址 用户名@IP地址:服务器中的地址
scp /path/to/local_file username@remote_host:/path/to/remote_directory

从服务器传到本地:
scp username@remote_host:/path/to/remote_directory /path/to/local_file
![]()
rm:删除
-r或-rf:递归删除目录及其内容。
rm -r:删除目录并询问
rm -rf:删除目录不再询问
mv:

chmod:

chmod 777 filename:所有人都有权限
chmod中三个数字分别代表user,group,other的权限
tar:
创建压缩文件:
tar -cvzf archive.tar.gz /path/to/directory
解压文件:
tar -xvzf archive.tar.gz
⭐解压出来除了解压文件,原文件仍然存在

相关文章:
计算机导论实验——Linux基础入门
使用Xshell登录 Linux 主机 linux命令: cd:去哪里 pwd:在哪里 ls:查看当前有什么文件 mkdir:创建新目录 cp:复制 cat:连接或显示文件 rm:删除 mv:用于移动或重命名文件…...
服务运营 |摘要:学术+业界-近期前沿运筹医疗合作精选
推文作者:李舒湉 编者按 本文归纳整理了近期INFORMS Journal on Applied Analytics中的相关业界合作研究。 这些研究成果体现了运筹学在医疗健康领域实践的效果。文中的学术业界合作使用了不同的研究工具。第一篇文章使用仿真模型帮助诊所进行不同拥挤程度下诊所使用…...
基于Dockerfile创建镜像
基于现有镜像创建 1.首先启动一个镜像,在容器里做修改 docker create -it centos:7 /bin/bash #常用选项: -m 说明信息; -a 作者信息; -p 生成过程中停止容器的运行。 2.然后将修改后的容器提交为新的镜像,需要使用…...
架构实战关键知识点
1.维基百科的“系统”定义:https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%B5%B1 2.维基百科的“软件模块”定义:https://zh.wikipedia.org/wiki/%E8%BB%9F%E9%AB%9 4%E6%A8%A1%E7%B5%84 3.维基百科的“软件组件”定义:https://zh.wikipedia.or…...
M1Mac开启x86_64命令行archlinux虚拟机的最佳实践(qemu)
categories: [Tips] tags: Linux MacOS 写在前面 UTM 虚拟机可以卸载了, 命令行才是永远滴神, M1 MacBook Air 又能再战了! 之前一直用 UTM 的虚拟化开启 x86_64 的 Linux 虚拟机的, 但是我发现 UTM 好像不是必须的, 只要有qemu 就可以了, 下面就看看如何不通过图形界面前端…...
深度神经网络压缩与加速技术
// 深度神经网络是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。深度神经网络是一…...
系统架构设计:11 论湖仓一体架构及其应用
目录 一 湖仓一体(Lakehouse) 1 数据仓库 2 数据湖 3 数据仓库和数据湖 4 湖仓一体(Lakehouse)...
Linux系统编程_文件编程第1天:打开、写入、读取、关闭文件等编程
1. 文件编程概述(399.1) 内容超多: 文件系统原理及访问机制文件在内核中的管理机制什么是文件信息节点inode文件的共享文件权限,各种用户对其权限。。。。。。 应用为王,如: 账单游戏进度配置文件等 关心如…...
scapy构造ND报文
控制报文之:找邻居报文 什么是ND报文 ND报文是指网络中的 Neighbor Discovery(ND)控制报文。Neighbor Discovery 是 IPv6 网络中的一种协议,它用于管理网络节点之间的邻居关系、地址解析、路由缓存维护和自动配置等任务。ND 协议…...
c++设计模式之单例设计模式
💂 个人主页:[pp不会算法v](https://blog.csdn.net/weixin_73548574?spm1011.2415.3001.5343) 🤟 版权: 本文由【pp不会算法^v^】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦…...
App自动化测试环境搭建
目录 1、java jdk安装 2、node.js安装 3、安装模拟器安装 4、Android SDK 安装 5、Appium-Server安装 6、appium客户端安装 7、Appium-Python-Client安装 只做记录和注意点,详细内容不做解释 环境:winappium夜神模拟器python 需要用到的工具&a…...
win10搭建gtest测试环境+vs2019
首先是下载gtest,这个我已经放在了博客上方资源绑定处,这个适用于win10vs版本,关于liunx版本的不能用这个。 或者百度网盘链接: 链接:https://pan.baidu.com/s/15m62KAJ29vNe1mrmAcmehA 提取码:vfxz 下…...
【代码随想录】算法训练营 第二天 第一章 数组 Part 2
977. 有序数组的平方 题目 暴力解法 思路 原地更新所有数组元素为其平方数后,再使用sort函数排序,对vector使用sort函数时,两个参数分别是vector的起始元素和终止元素。 代码 class Solution { public:vector<int> sortedSquares(…...
在深度学习中,累计不同批次的损失估计总体损失
在深度学习中,累计不同批次的损失估计总体损失 在深度学习训练模型的过程中,通常会通过计算不同批次间的损失和,当作模型在这个训练集上的总体损失,这种做法是否具有可行性呢? 什么是总体损失? 总体损失是计算模型在…...
论文导读|八月下旬Operations Research文章精选:定价问题专题
编者按: 在“ Operations Research论文精选”中,我们有主题、有针对性地选择了Operations Research中一些有趣的文章,不仅对文章的内容进行了概括与点评,而且也对文章的结构进行了梳理,旨在激发广大读者的阅读兴…...
(三)Apache log4net™ 手册 -演示
0、引言 在开始本文之前,推荐您首先阅读 Apache log4net™ 手册中有关 介绍 与 配置 的相关内容。本文将通过实践分别为您演示如何使用 Visual Studio 2022 在 .NET Framework 项目和 .NET 项目下配置并使用 Log4Net。 1、为 .NET Framework 项目配置 Log4Net 1.1…...
VScode远程root权限调试
尝试诸多办法无法解决的情况下,允许远程登陆用户直接以root身份登录 编辑sshd_config文件 sudo vim /etc/ssh/sshd_config 激活配置 注释掉PermitRootLogin without-password,即#PermitRootLogin without-password 增加一行:PermitRootLo…...
【ARM CoreLink 系列 7 -- TZC-400控制器简介】
文章目录 背景介绍1.1 TZC-400 简介1.2 TZC-400 使用示例1.3 TZC-400 interfaces1.3.1 FPID1.3.2 NSAID Regionregion 检查规则 1.4 Features1.5 Register summary1.6 TZC-400和TZPC和TZASC区别 背景介绍 为了确保内存能够正确识别总线的信号控制位,新增一个TrustZ…...
【C++】-c++11的知识点(中)--lambda表达式,可变模板参数以及包装类(bind绑定)
💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …...
浅析倾斜摄影三维模型(3D)几何坐标精度偏差的几个因素
浅析倾斜摄影三维模型(3D)几何坐标精度偏差的几个因素 倾斜摄影是一种通过倾斜角度较大的相机拍摄建筑物、地形等场景,从而生成高精度的三维模型的技术。然而,在进行倾斜摄影操作时,由于多种因素的影响,导致…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 ,从而消除了直接物理连接的需要。USB over IP的…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
