扩展lucas定理
前置知识:
- lucas定理
- 中国剩余定理
介绍
当正整数n,mn,mn,m很大,且质数ppp较小的时候,要求CnmC_n^mCnm对ppp取模后的值,可以用lucas定理。
但如果ppp不是质数,那该怎么办呢?如果mmm较小,则可以用扩展lucas定理。
第一步:中国剩余定理
设p=p1r1p2r2⋯pkrkp=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}p=p1r1p2r2⋯pkrk,其中pip_ipi为质数。我们可以先求出Cnm%p1r1,Cnm%p2r2,…,Cnm%pkrkC_n^m\%p_1^{r_1},C_n^m\%p_2^{r_2},\dots,C_n^m\%p_k^{r_k}Cnm%p1r1,Cnm%p2r2,…,Cnm%pkrk的值a1,a2,…,aka_1,a_2,\dots,a_ka1,a2,…,ak。
我们把CnmC_n^mCnm看作未知数xxx,可以得到以下方程组:
{x≡a1(modp1r1)x≡a2(modp2r2)x≡a3(modp3r3)......x≡an(modpkrk)\left\{ \begin{matrix} x\equiv a_1\pmod{p_1^{r_1}}\\ x\equiv a_2\pmod{p_2^{r_2}}\\ x\equiv a_3\pmod{p_3^{r_3}}\\ ......\\ x\equiv a_n\pmod{p_k^{r_k}} \end{matrix} \right. ⎩⎨⎧x≡a1(modp1r1)x≡a2(modp2r2)x≡a3(modp3r3)......x≡an(modpkrk)
利用中国剩余定理,我们可以求出xxx,它是以ppp为周期出现的无穷多个解。而在[0,p)[0,p)[0,p)这个周期的解,就是Cnm%pC_n^m\%pCnm%p后的值。
那么a1,a2…,aka_1,a_2\dots,a_ka1,a2…,ak怎么求呢?
第二步:组合数模质数的幂
由第一步可得
a=Cnmmodpra=C_n^m\bmod p^ra=Cnmmodpr
因为Cnm=n!m!(n−m)!C_n^m=\dfrac{n!}{m!(n-m)!}Cnm=m!(n−m)!n!,我们若要求m!m!m!和(n−m)!(n-m)!(n−m)!关于prp^rpr的逆元,则要把其中所有的质因子ppp提出来,再乘回去即可。
Cnm=n!m!(n−m)!=n!pxm!py×(n−m)!pz×px−y−zC_n^m=\dfrac{n!}{m!(n-m)!}=\dfrac{\frac{n!}{p^x}}{\frac{m!}{p^y}\times \frac{(n-m)!}{p^z}}\times p^{x-y-z}Cnm=m!(n−m)!n!=pym!×pz(n−m)!pxn!×px−y−z
其中x,y,zx,y,zx,y,z分别是n!,m!,(n−m)!n!,m!,(n-m)!n!,m!,(n−m)!中质因子ppp的次数。此时m!py×(n−m)!pz\dfrac{m!}{p^y}\times \dfrac{(n-m)!}{p^z}pym!×pz(n−m)!与prp^rpr互质,可以直接求逆元。因为CnmC_n^mCnm为整数,所以x−y−z≥0x-y-z\geq 0x−y−z≥0,px−y−zp^{x-y-z}px−y−z可以用快速幂来求。
第三步:阶乘除去质因子后模质数幂
接下来的问题就是计算以下式子
n!ptmodpk\dfrac{n!}{p^t}\bmod p^kptn!modpk
我们呢先考虑如如何计算n!modpkn!\bmod p^kn!modpk。举个例子:n=22,p=3,k=2n=22,p=3,k=2n=22,p=3,k=2
22!=1×2×3×4×5×6×7×8×9×10×11×12×13×14×15×16×17×18×19×20×21×2222!=1\times 2\times 3\times 4\times 5\times 6\times 7\times 8\times 9\times 10\times 11\times 12\times 13\times 14\times 15\times 16\times 17\times 18\times 19\times 20\times 21\times 2222!=1×2×3×4×5×6×7×8×9×10×11×12×13×14×15×16×17×18×19×20×21×22
把其中333的倍数提出来,得到
22!=(3×6×9×12×15×18×21)×(1×2×4×5×7×8×10×11×13×14×16×17×19×20×22)22!=(3\times 6\times 9\times 12\times 15\times 18\times 21)\times (1\times 2\times 4\times 5\times 7\times 8\times 10\times 11\times 13\times 14\times 16\times 17\times 19\times 20\times 22)22!=(3×6×9×12×15×18×21)×(1×2×4×5×7×8×10×11×13×14×16×17×19×20×22)
=37×(1×2×3×4×5×6×7)×(1×2×4×5×7×8×10×11×13×14×16×17×19×20×22)\qquad =3^7\times (1\times 2\times 3\times 4\times 5\times 6\times 7)\times (1\times 2\times 4\times 5\times 7\times 8\times 10\times 11\times 13\times 14\times 16\times 17\times 19\times 20\times 22)=37×(1×2×3×4×5×6×7)×(1×2×4×5×7×8×10×11×13×14×16×17×19×20×22)
其中373^737即为pkp^kpk,就是需要被提出的部分。
对于7!7!7!,即为⌊np⌋!\lfloor \dfrac np\rfloor!⌊pn⌋!,可以递归来求。
对于后面的部分,我们发现
1×2×4×5×7×8≡10×11×13×14×16×17(modpk)1\times 2\times 4\times 5\times 7\times 8\equiv 10\times 11\times 13\times 14\times 16\times 17\pmod{p^k}1×2×4×5×7×8≡10×11×13×14×16×17(modpk)
我们发现1×2×4×5×7×81\times 2\times 4\times 5\times 7\times 81×2×4×5×7×8在整个式子中会出现⌊npk⌋\lfloor\dfrac{n}{p^k}\rfloor⌊pkn⌋次,因此,我们可以先计算在pkp^kpk以内的部分,然后再求其⌊npk⌋\lfloor\dfrac{n}{p^k}\rfloor⌊pkn⌋次幂。不要忘了乘上最后多出的一部分。
1×2×4×5×7×8×10×11×13×14×16×17×19×20×22≡(1×2×4×5×7×8)3×19×20×22(modpk)1\times 2\times 4\times 5\times 7\times 8\times 10\times 11\times 13\times 14\times 16\times 17\times 19\times 20\times 22\equiv (1\times 2\times 4\times 5\times 7\times 8)^3\times 19\times 20\times 22\pmod{p^k}1×2×4×5×7×8×10×11×13×14×16×17×19×20×22≡(1×2×4×5×7×8)3×19×20×22(modpk)
也就是说,对于以下式子
=37×(1×2×3×4×5×6×7)×(1×2×4×5×7×8×10×11×13×14×16×17×19×20×22)\qquad =3^7\times (1\times 2\times 3\times 4\times 5\times 6\times 7)\times (1\times 2\times 4\times 5\times 7\times 8\times 10\times 11\times 13\times 14\times 16\times 17\times 19\times 20\times 22)=37×(1×2×3×4×5×6×7)×(1×2×4×5×7×8×10×11×13×14×16×17×19×20×22)
373^737是要提出的,不用计算。第二部分可以递归计算。第三部分可以O(pk)O(p^k)O(pk)得出。
总结
扩展lucas定理与lucas定理在实现上并没有太大关联,只是解决的问题比较类似。扩展lucas定理的时间复杂度大概在O(p+log2n)O(p+\log^2 n)O(p+log2n)。当然,这是最坏的时间复杂度,一般的时间复杂度远远低于此。如果ppp的质因子比较多且都比较小,则时间复杂度会降低很多。
例题
P4720 【模板】扩展卢卡斯定理
code
#include<bits/stdc++.h>
using namespace std;
int tot=0;
long long mod,x,y,ans=0,a[105],r[105];
long long mi(long long t,long long v){if(v==0) return 1;long long re=mi(t,v/2);re=re*re%mod;if(v&1) re=re*t%mod;return re;
}
void exgcd(long long c,long long d){if(d==0){x=1;y=0;return;}exgcd(d,c%d);long long t=x;x=y;y=t-c/d*y;
}
long long gt(long long v,long long p,long long q){if(!v) return 1;long long re=1;for(int i=1;i<=q;i++){if(i%p) re=re*i%q;}re=mi(re,v/q)%q;for(int i=1;i<=v%q;i++){if(i%p) re=re*i%q;}return re*gt(v/p,p,q)%q;
}//第三步
long long C(long long v1,long long v2,long long p,long long q){if(v1<v2) return 0;long long f1=gt(v1,p,q),f2=gt(v2,p,q),f3=gt(v1-v2,p,q),vt=0;for(long long i=p;i<=v1;i*=p) vt+=v1/i;for(long long i=p;i<=v2;i*=p) vt-=v2/i;for(long long i=p;i<=v1-v2;i*=p) vt-=(v1-v2)/i;return mi(p,vt)%q*f1%q*(mi(f2,q-q/p-1)%q)%q*(mi(f3,q-q/p-1)%q)%q;
}//第二步
int main()
{long long n,m,v;scanf("%lld%lld%lld",&n,&m,&mod);v=mod;for(int i=2;i*i<=v;i++){if(v%i==0){r[++tot]=1;while(v%i==0){r[tot]*=i;v/=i;}a[tot]=C(n,m,i,r[tot]);}}if(v>1){r[++tot]=v;a[tot]=C(n,m,v,v);}v=mod;for(int i=1;i<=tot;i++){exgcd(v/r[i],r[i]);x=(x%r[i]+r[i])%r[i];ans=(ans+v/r[i]*a[i]*x%v)%v;}//第一步printf("%lld",ans);return 0;
}
相关文章:
扩展lucas定理
前置知识: lucas定理中国剩余定理 介绍 当正整数n,mn,mn,m很大,且质数ppp较小的时候,要求CnmC_n^mCnm对ppp取模后的值,可以用lucas定理。 但如果ppp不是质数,那该怎么办呢?如果mmm较小,则…...
医疗影像工具LEADTOOLS 入门教程: 从 PDF 中提取附件 - 控制台 C#
LEADTOOLS 是一个综合工具包的集合,用于将识别、文档、医疗、成像和多媒体技术整合到桌面、服务器、平板电脑、网络和移动解决方案中,是一项企业级文档自动化解决方案,有捕捉,OCR,OMR,表单识别和处理&#…...
【LVGL】学习笔记--(1)Keil中嵌入式系统移植LVGL
一 LVGL简介最近emwin用的比较烦躁,同时被LVGL酷炫的界面吸引到了,所以准备换用LVGL试试水。LVGL(轻量级和通用图形库)是一个免费和开源的图形库,它提供了创建嵌入式GUI所需的一切,具有易于使用的图形元素,美丽的视觉效…...
Transformer学习笔记
Transformer学习笔记1. 参考2. 模型图3.encoder部分3.1 Positional Encoding3.2 Muti-Head Attention3.3 ADD--残差连接3.4 Norm标准化3.5 单个Transformer Encoder流程图4.decoder部分4.1 mask Muti-Head Attention4.2 Muti-Head Attention5 多个Transformer Encoder和多个Tra…...
vue-cli引入wangEditor、Element,封装可上传附件的富文本编辑器组件(附源代码直接应用,菜单可调整)
关于Element安装引入,请参考我的另一篇文章:vue-cli引入Element Plus(element-ui),修改主题变量,定义全局样式_shawxlee的博客-CSDN博客_chalk variables 1、安装wangeditor npm i wangeditor --savewangE…...
移动办公时代,数智化平台如何赋能企业管理升级?
在传统的办公模式下,企业组织办公不仅时效低,周期长、成本高,且各办公系统相互独立。随着社会经济的发展,人们的工作生活变得多样化,对于办公的需求也越来越多,存在明显弊端的传统办公模式已不能满足企业对…...
2023“拼夕夕”为什么可以凭借简单的拼团做这么大?
2023“拼夕夕”为什么可以凭借简单的拼团做这么大? 2023-02-24 梦龙 大家好,我是你们熟悉而又陌生的好朋友梦龙,一个创业期的年轻人 大家都知道,拼夕夕背后的商业模式是拼团,但是大家知道为什么简单的拼团可以让拼夕…...
sqlmap工具
sqlmap Sqlmap是一个开源的渗透测试工具,可以用来自动化的检测,利用SQL注入漏洞,获取数据库服务器的权限。目前支持的数据库有MySQL、Oracle、PostgreSQL、Microsoft SQL Server、Microsoft Access等大多数据库 Sqlmap采用了以下5种独特的SQ…...
高/低压供配电系统设计——安科瑞变电站电力监控系统的应用
摘 要:在电力系统的运行过程中,变电站作为整个电力系统的核心,在保证电力系统可靠的运行方面起着至关重要的作用,基于此需对变电站监控系统的特点进行分析,结合变电站监控系统的功能需求,对变电站电力监控系…...
Tapdata 和 Databend 数仓数据同步实战
作者:韩山杰https://github.com/hantmacDatabend Cloud 研发工程师基础架构在云计算时代也发生着翻天地覆的变化,对于业务的支持变成了如何能利用好云资源实现降本增效,同时更好的支撑业务也成为新时代技术人员的挑战。 本篇文章通过…...
单核CPU, 1G内存,也能做JVM调优吗?
最近,笔者的技术群里有人问了一个有趣的技术话题:单核CPU, 1G内存的超低配机器,怎么做JVM调优?这实际上是两个问题。单核CPU的超低配机器,怎么充分利用CPU?单核CPU, 1G内存的超低配机器,怎么做J…...
《计算机应用研究》投稿经历和时间节点
记录四川计算机研究院《计算机应用研究》期刊投稿经历和时间节点。 日期状态周期2022.11.09上传稿件当天显示编辑部已接收稿件,开始初审2022.11.09 – 2022.11.15初审6天2022.11.15 – 2022.12.21外审36天2022.12.21收到退修意见(邮件形式)编…...
mars3d获取视窗的范围
期望效果 :1.我现在想获取到当前视窗的地图范围,请问有什么⽅法可以拿到吗 2.⽐如当前视窗地图范围的边界点,每个边界点的经纬度 回复:1.mars3d的API⽂档中有相关的⽅法 2.具体使⽤可以参考⽂档地址:http://mars3d.cn/api/Map.htm…...
《高性能MySQL》读书笔记(上)
目录 MySQL的架构 MySQL中的锁 MySQL中的事务 事务特性 隔离级别 事务日志 多版本并发控制MVCC 影响MySQL性能的物理因素 InnoDB缓冲池 MySQL常用的数据类型以及优化 字符串类型 日期和时间类型 数据标识符 MySQL的架构 默认情况下,每个客户端连接都…...
05-代理模式
代理模式 代理模式使用代理对象来代替真实对象的访问,在不修改原有对象的前提下,提供额外的操作,扩展目标对象的功能。代理模式分为静态代理和动态代理。 静态代理 手动为目标对象中的方法进行增强,通过实现相同接口重写方法进…...
RocketMQ源码分析之消费队列、Index索引文件存储结构与存储机制-上篇
RocketMQ 存储基础回顾: 源码分析RocketMQ之CommitLog消息存储机制 本文主要从源码的角度分析 Rocketmq 消费队列 ConsumeQueue 物理文件的构建与存储结构,同时分析 RocketMQ 索引文件IndexFile 文件的存储原理、存储格式以及检索方式。RocketMQ 的存储…...
基于Java的浏览器的设计与实现毕业设计
技术:Java等摘要:当今世界是一个以计算机网络为核心的信息时代,互联网为人们快速获取、发布和传递信息提供了便捷,而浏览器作为互联网上查找信息的重要工具,给人们提供了巨大而又宝贵的信息财富,受到了大家…...
手把手教你使用vite打包自己的js代码包并推送到npm
准备 要有npm账号,没有的铁子去npm官网注册一个,又不要钱。 使用vite创建项目 一行代码搞定 npm create vite viet-demo框架选择Others 模板选择library 选择ts 这样项目就创建完了 这个项目默认有一个函数,用来记录按钮的点击次数并…...
Tomcat源码分析-关于tomcat热加载的一些思考
在前面的文章中,我们分析了 tomcat 类加载器的相关源码,也了解了 tomcat 支持类的热加载,意味着 tomcat 要涉及类的重复卸装/装载过程,这个过程是很敏感的,一旦处理不当,可能会引起内存泄露 卸载类 我们知…...
DataWhale 大数据处理技术组队学习task4
五、分布式并行编程模型MapReduce 1. 概述 1.1 分布式并行编程 背景:摩尔定律已经开始逐渐失效,提升数据处理计算能力刻不容缓。传统的程序开发与分布式并行编程 传统的程序开发:以单指令、单数据流的方式顺序执行,虽然这种方式…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
Linux中INADDR_ANY详解
在Linux网络编程中,INADDR_ANY 是一个特殊的IPv4地址常量(定义在 <netinet/in.h> 头文件中),用于表示绑定到所有可用网络接口的地址。它是服务器程序中的常见用法,允许套接字监听所有本地IP地址上的连接请求。 关…...
AT模式下的全局锁冲突如何解决?
一、全局锁冲突解决方案 1. 业务层重试机制(推荐方案) Service public class OrderService {GlobalTransactionalRetryable(maxAttempts 3, backoff Backoff(delay 100))public void createOrder(OrderDTO order) {// 库存扣减(自动加全…...
02-性能方案设计
需求分析与测试设计 根据具体的性能测试需求,确定测试类型,以及压测的模块(web/mysql/redis/系统整体)前期要与相关人员充分沟通,初步确定压测方案及具体的性能指标QA完成性能测试设计后,需产出测试方案文档发送邮件到项目组&…...
