【数据结构】二叉树--链式结构的实现 (遍历)
目录
一 二叉树的遍历
1 构建一个二叉树
2 前序遍历
3 中序遍历
4 后续遍历
5 层序
6 二叉树销毁
二 应用(递归思想)
1 二叉树节点个数
2 叶子节点个数
3 第K层的节点个数
4 二叉树查找值为x的节点
5 判断是否是二叉树
一 二叉树的遍历
学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉 树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历 是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础
二叉树是: 1. 空树 2. 非空:根节点,根节点的左子树、根节点的右子树组成的。
前序、中序以及后序遍历:
按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:
1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为 根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
代码实现:
1 构建一个二叉树
typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;struct BinaryTreeNode* right;int val;
}BTNode;BTNode* BuyNode(int x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc fail");exit(-1);}node->left = NULL;node->right = NULL;node->val = x;return node;
}int main()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;PrevOrder(node1);printf("\n");InOrder(node1);printf("\n");PostOrder(node1);printf("\n");return 0;
}
2 前序遍历
//前序遍历
void PrevOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%d ", root->val);PrevOrder(root->left);PrevOrder(root->right);
}
3 中序遍历
//中序遍历
void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->val);InOrder(root->right);
}
4 后续遍历
//后序遍历
void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);
}
5 层序
void QueueInit(Que* pq)
{assert(pq);pq->head = pq->tail = NULL;pq->size = 0;
}void QueuePush(Que* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->next = NULL;newnode->val = x;if (pq->tail == NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;}bool QueueEmpty(Que* pq)
{assert(pq);return pq->head == NULL;
}void QueuePop(Que* pq)
{assert(pq);assert(!QueueEmpty(pq));if (pq->head->next == NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* next = pq->head->next;free(pq->head);pq->head = next;}pq->size--;
}QDataType QueueFront(Que* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->head->val;
}void LevelOrder(BTNode* root)
{Que q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);printf("%d ", front->val);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}QueuePop(&q);}
}
6 二叉树销毁
//二叉树的销毁
void TreeDestroy(BTNode* root)
{if (root == NULL){return;}TreeDestroy(root->left);TreeDestroy(root->right);free(root);}
二 应用(递归思想)
1 二叉树节点个数
int size = 0;
int TreeSize(BTNode* root)
{if (root == NULL){return 0;}else{size++;}TreeSize(root->left);TreeSize(root->right);return size;}
我们还可以改进
int TreeSize(BTNode* root)
{return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}
2 叶子节点个数
int TreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}
3 第K层的节点个数
int TreeKLevel(BTNode* root, int k)
{assert(k > 0);if (root == NULL){return 0;}if (k == 1){return 1;}return TreeKLevel(root->left, k-1) + TreeKLevel(root->right, k-1);
}
4 二叉树查找值为x的节点
BTNode* TreeFind(BTNode* root, int x)
{if (root == NULL){return NULL;}if (root->val == x){return root;}BTNode* ret = NULL;//从左树找 找到了就返回 不找右树了ret = TreeFind(root->left, x);if (ret){return ret;}//左树没找到 就开始找右树ret = TreeFind(root->right, x);if (ret){return ret;}}
5 判断是否是二叉树
void QueueInit(Que* pq)
{assert(pq);pq->head = pq->tail = NULL;pq->size = 0;
}void QueueDestroy(Que* pq)
{assert(pq);QNode* cur = pq->head;while (cur){QNode* next = cur->next;free(cur);cur = next;}pq->head = pq->tail = NULL;pq->size = 0;
}void QueuePush(Que* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->next = NULL;newnode->val = x;if (pq->tail == NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;}bool QueueEmpty(Que* pq)
{assert(pq);return pq->head == NULL;
}void QueuePop(Que* pq)
{assert(pq);assert(!QueueEmpty(pq));if (pq->head->next == NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* next = pq->head->next;free(pq->head);pq->head = next;}pq->size--;
}QDataType QueueFront(Que* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->head->val;
}int TreeComplete(BTNode* root)
{Que q;QueInit(&q);if (root != NULL){QueuePush(&q, root);}//找空节点while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);if (front == NULL){break;}QueuePush(&q, front->left);QueuePush(&q, front->right);QueuePop(&q);}//已经找到空节点while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front != NULL){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}
二叉树的链式结构的本质思想是递归, 对于递归不了解的小伙伴可以看看我之前的博客, 也可以自己尝试画一下递归展开图,下一节讲OJ题目.实战才最有效!继续加油!
相关文章:

【数据结构】二叉树--链式结构的实现 (遍历)
目录 一 二叉树的遍历 1 构建一个二叉树 2 前序遍历 3 中序遍历 4 后续遍历 5 层序 6 二叉树销毁 二 应用(递归思想) 1 二叉树节点个数 2 叶子节点个数 3 第K层的节点个数 4 二叉树查找值为x的节点 5 判断是否是二叉树 一 二叉树的遍历 学习二叉树结构࿰…...
reids基础数据结构
文章目录 一.整体1.RedisDb2.对象头 二.string三.list1.ziplist2.quicklist 四.hash五.set六.zset1.查找2.插入3.删除4.更新5.元素排名 一.整体 1.RedisDb redis内部的所有键值对是两个hash结构,维护了键值对和过期时间 dict *dictdict *expire 2.对象头 int t…...
gitlab 维护
一 环境信息 二 日常维护 2.1 gitlab mirror 2.1.1 常见方法 社区版本gitab mirror 只能push,默认限制了局域网内mirror 需要修改admin/setting/network(网络)/outbound(出站请求) 勾选允许局域网即可。 2.1.2 疑难问题 内网有三个gitlab A: GITLAB 12 B\C GI…...

ABB机器人RWS连接方法
目录 方法一:curl 方法二:网页地址 方法三:Postman 与ABB机器人通讯,较新机器人,可以使用Robot Web Services,直接方便地使用网页进行查看当前数据,但是网页需要用户名密码验证,测…...
Spring Boot的循环依赖问题
目录 1.循环依赖的概念 2.解决循环依赖的方法 1.构造器方法注入: 2.Lazy注解 3.DependsOn注解 1.循环依赖的概念 两个或多个bean之间互相依赖,形成循环,此时,Spring容器无法确定先实例化哪个bean,导致循环依赖的…...
postgresql|数据库|恢复备份的时候报错:pg_restore: implied data-only restore的处理方案
一, 前情回顾 某次在使用pg_dump命令逻辑备份出来的备份文件对指定的几个表恢复的时候,报错pg_restore: implied data-only restore 当然,遇到问题首先就是百度了,但好像没有什么明确的解决方案,具体的报错命令和…...

Elasticsearch:使用 Langchain 和 OpenAI 进行问答
这款交互式 jupyter notebook 使用 Langchain 将虚构的工作场所文档拆分为段落 (chunks),并使用 OpenAI 将这些段落转换为嵌入并将其存储到 Elasticsearch 中。然后,当我们提出问题时,我们从向量存储中检索相关段落,并使用 langch…...

安全巡检管理系统—隐患排查治理
安全管理越来越重要,每个生产企业都需要一个安全隐患排查治理小程序!利用凡尔码平台搭建安全巡检管理系统主要有以下四个功能 1、制定巡检计划:安全巡检管理系统可以帮助用户制定巡检计划,用户可以根据需要创建不同的计划…...

第9期ThreadX视频教程:自制个微秒分辨率任务调度实现方案(2023-10-11)
视频教程汇总帖:【学以致用,授人以渔】2023视频教程汇总,DSP第12期,ThreadX第9期,BSP驱动第26期,USB实战第5期,GUI实战第3期(2023-10-11) - STM32F429 - 硬汉嵌入式论坛 …...
C++ 11 lamdba表达式详解
C lamdba 表达式 Lambda表达式是C11引入的一个新特性,它允许我们在需要函数对象的地方,使用一种更加简洁的方式定义匿名函数。Lambda表达式通常用于STL中的算法、回调函数、事件处理程序等场合。 Lambda表达式的基本语法为: Copy Code[captu…...
Linux运行环境搭建系列-Zookeeper安装
Zookeeper安装 ## 下载Zookeeper:https://zookeeper.apache.org/releases.html https://dlcdn.apache.org/zookeeper/zookeeper-3.8.3/apache-zookeeper-3.8.3-bin.tar.gz ## 解压 tar -zxvf apache-zookeeper-3.8.3-bin.tar.gz ## 删除原文件,重命名 r…...

vscode利用lauch.json和docker中的delve调试本地crdb
---- vscode利用delve调试crdb 创建了一个delve容器用于debug crdbdelve: Delve是一个用于Go编程语言的调试器。它提供了一组命令和功能,可以帮助开发人员在调试过程中检查变量、设置断点、单步执行代码等操作。Delve可以与Go程序一起使用,…...

【java|golang】多字段排序以及排序规则
奖励最顶尖的 K 名学生 给你两个字符串数组 positive_feedback 和 negative_feedback ,分别包含表示正面的和负面的词汇。不会 有单词同时是正面的和负面的。 一开始,每位学生分数为 0 。每个正面的单词会给学生的分数 加 3 分,每个负面的词…...

腾讯云 轻量云 上海 VPS 测评
description: 发布于 2023-07-05腾讯云 轻量云 上海 VPS 测评 腾讯云国内机非常稳定,一年用下来没有掉线丢包的情况。国内机适合与备案域名一起建站使用。带宽很小,图片资源使用CDN加速或海外机提供。 规格 CPU - 2核 内存 - 2GB 系统盘 - SSD云硬盘…...

消息称苹果或在明年推出搭载M3芯片的MacBook产品
近日据 DigiTimes 发布的博文,苹果公司计划在 2024 年推出搭载 M3 芯片的 MacBook 产品。然而,关于这款新产品的发布日期仍存在争议。虽然一些爆料认为苹果可能会在今年发布这款产品,但也有一些爆料认为发布时间会推迟到 2024 年。根据各项报…...

Generalizable NeRF in ICCV‘23
文章目录 前置知识Generalizable《Enhancing NeRF akin to Enhancing LLMs: Generalizable NeRF Transformer with Mixture-of-View-Experts》《WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields》NeO 360: Neural Fields for Sparse View Synthesis of Outdoor …...

Unity2017适配安卓12
测试版本为Unity2017.4.25f1 1.在自定义AndroidManifest.xml(位于Assets\Plugins\Android\)中添加android:exported"true" <?xml version"1.0" encoding"utf-8"?> <manifestxmlns:android"http://schema…...

ios UI 基础开发一
目录 第一节:基础库 第二节:弹出模拟器的键盘 第三节:模拟器回到桌面 第四节:Viewcontroller 与 View 的关系 第五节:快捷键 第六节:键盘召回 第七节:启动流程xcode介绍 第八节…...

echarts一些配置项的使用
前言:我是自己最近写项目用到的,我做个整理; 一. 基本使用 1.具有大小(宽高)的div ,id唯一; 例如: <div id"crewEchart"></div> 2.在项目中引入: import * as echarts from "echarts"; 3.写一个关于他的方法,在mounted的时候调用: moun…...
python yaml库:safe_load()(安全解析函数,解析yaml)(防止yaml文件中包含恶意代码)
文章目录 Python YAML: 使用 safe_load 进行安全解析什么是 safe_load?如何使用 safe_load?为什么选择 safe_load 而非 load? Python YAML: 使用 safe_load 进行安全解析 YAML (YAML Ain’t Markup Language) 是一种人类可读的数据序列化标准。它被广泛用于配置文件、多语言…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...