136.只出现一次的数字
136. 只出现一次的数字 - 力扣(LeetCode)
给你一个 非空 整数数组 nums
,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。
示例 1 :
输入:nums = [2,2,1] 输出:1
示例 2 :
输入:nums = [4,1,2,1,2] 输出:4
示例 3 :
输入:nums = [1] 输出:1
提示:
1 <= nums.length <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
- 除了某个元素只出现一次以外,其余每个元素均出现两次。
思路
利用异或运算;借鉴文章:http://t.csdnimg.cn/oydZq
完整代码
class Solution {public int singleNumber(int[] nums) {int result = nums[0];if(nums.length>1){for(int i=1;i<nums.length;i++){result = result^nums[i];}}return result;}
}
相关文章:
136.只出现一次的数字
136. 只出现一次的数字 - 力扣(LeetCode) 给你一个 非空 整数数组 nums ,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题,且…...
mysql中遇到查询字段的别名与函数冲突问题
比如以下哎,我查询城市行业数量排名 select City, DENSE_RANK() over(ORDER BY COUNT(Id) DESC) rank, COUNT(Id) num,IndustrySubGroupName from base_companyinfo WHERE IndustrySubGroupName工业机器人 GROUP BY City 上面使用 DENSE_RANK() 函数来计算排名&am…...
直播获奖
题目描述 NOI2130 即将举行。为了增加观赏性, CCF 决定逐一评出每个选手的成 绩,并直播即时的获奖分数线。本次竞赛的获奖率为 𝑤% ,即当前排名前 𝑤% 的选手的最低成绩就是即时的分数线。 更具体地,…...

选择适合自身业务的HTTP代理有哪些因素决定?
相信对很多爬虫工作者和数据采集的企业来说,如何选购适合自己业务的HTTP代理是一个特别特别困扰的选题,市面上那么多HTTP代理厂商,好像这家有这些缺点,转头又看到另外一家的缺点,要找一家心仪的仿佛大海捞针。今天我们…...
1.3 do...while实现1+...100 for实现1+...100
思路:两个变量,一个变量存储数据之和,一个变量实现自增就行 do...while int i, s;i 1;s 0;do{s 1;i;} while (i < 100);cout << s << endl; for int i, j0;for (i 1; i < 100; i){j 1;}cout << j << …...
react数据管理之setState与Props
react数据管理之setState与Props setState调用原理 setState 是 React 中用于更新组件状态(state)的方法。它的调用原理可以分为以下几个步骤: 状态的改变:当调用 setState 时,React 会将新的状态对象与当前状态对象…...

如何保护我们的网络安全
保护网络安全是至关重要的,尤其是在今天的数字化时代。以下是一些保护网络安全的基本步骤: 1、使用强密码:使用包含字母、数字和特殊字符的复杂密码。不要在多个网站上重复使用相同的密码。定期更改密码。 2、启用双因素认证 (2FA)ÿ…...

springboot 制造装备物联及生产管理ERP系统
springboot 制造装备物联及生产管理ERP系统 liu1113625581...

Google zxing 生成带logo的二维码图片
环境准备 开发环境 JDK 1.8SpringBoot2.2.1Maven 3.2 开发工具 IntelliJ IDEAsmartGitNavicat15 添加maven配置 <dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.4.0</version> </…...
使用Python计算平面多边形间最短距离
要计算平面多边形间的最短距离,首先需要导入Excel表格中的多边形数据,然后使用GJK(Gilbert-Johnson-Keerthi)算法来判断两个多边形是否重叠。如果两个多边形不重叠,可以计算它们之间的最短距离。 以下是一个基本的Pyt…...

【Python】Python语言基础(中)
第十章 Python的数据类型 基本数据类型 数字 整数 整数就是整数 浮点数 在编程中,小数都称之为浮点数 浮点数的精度问题 print(0.1 0.2) --------------- 0.30000000000000004 1.可以通过round()函数来控制小数点后位数 round(a b),则表示…...
观察者模式、订阅者发布者模式、vtk中的观察者模式
文章目录 什么是观察者模式vtk是如何实现的观察者模式.AddObserver什么时候使用观察者模式?什么使用订阅发布者模式?观察者模式的实现订阅发布者的实现总结知识补充: 什么是观察者模式 用于在对象之间建立一对多的依赖关系,当一个对象的状态发生变化时…...
关于element-ui中,页面上有多个el-table并通过v-if、v-else等控制是否显示时,type=selection勾选框失效或不显示的问题
刚开始是勾选框那一列直接空了什么都不显示,搜索了一下说是给el-table标签增加id,加了之后是显示了,但是点击任何选框都会直接取消全部选中效果,翻了半天源码也没发现到底是哪里事件冲突了还是怎么回事,烦了࿰…...

Stewart六自由度正解、逆解计算-C#和Matlab程序
目录 一、Stewart并联六自由度正解计算 (一)概况 (二)Matlab正解计算 1、参考程序一 2、参考程序二 (三)C#程序正解计算 1、工程下载链接 2、正解运行计算 (四)正程…...
C语言 驼峰命名法和下划线命名法
在C语言中,变量命名遵循以下规则: 变量名只能由字母、数字和下划线组成。变量名必须以字母或下划线开头。变量名不能使用C语言中的关键字。变量名中不能出现连续的两个下划线。变量名区分大小写,例如,count和Count被视为两个不同…...
大数据学习(8)-hive压缩
&&大数据学习&& 🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博>主哦&#x…...

[sqoop]hive导入mysql,其中mysql的列存在默认值列
一、思路 直接在hive表中去掉有默认值的了列,在sqoop导入时,指定非默认值列即可, 二、具体 mysql的表 hive的表 create table dwd.dwd_hk_rcp_literature(id string,literature_no string,authors string,article_title string,source_title string…...

Stream流中的常用方法(forEach,filter,map,count,limit,skip,concat)和Stream流的特点
1、forEach方法 该方法接收一个Consumer接口是一个 消费型 的函数式接口,可以传递Lambda表达式,消费数据用来遍历流中的数据,是一个 终结 方法,遍历 之后就不能继续调用Stream流中的其他方法 package com.csdn.stream; import jav…...
2023大联盟2比赛总结
比赛链接 反思 T1 奇怪的贪心和构造题一直是我的软肋部分 T2 简单题 T3 也不难 T4 套路没学过,感觉还是太菜了 题解 A 考虑先给图随便染色,然后调整 因为每个点的度数为 3 3 3,所以如果有 x → u → v x\to u\to v x→u→v 的颜…...

Flutter笔记:电商中文货币显示插件Money Display
Flutter笔记 电商中文货币显示插件 Money Display 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq_28550263/article/details/1338…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...