结构体对齐规则
1.第一个成员在结构体变量偏移量为0的地址处。
2.其他成员变量对齐到某个数字(对齐数)的整数倍的地址处。(对齐数=编译器默认的一个对齐数与该成员大小的较小值)注意:目前有且只有VS编译器有默认为8.
3.结构体总大小为最大对齐数的整数倍。
4.如果嵌套了结构体,嵌套的结构体对齐到自己的最大对齐数整数倍处,结构体整体大小就是所有最大对齐数(含嵌套结构体对齐数)的整数倍。
例1:
a1是char类型所以大小是1,i是int类型所以大小是4,a2是char类型所以大小是1,如上图所示,a1从0开始,占一个,因为1-3之间没有4的倍数所以i从4开始占4个空间大小,a2占一个(任何数都是1的倍数);总共是9个空间的大小,因为9不是4的倍数,所以向后找直到所占大小是4的倍数浪费了3个空间大小,最终结果是12.
例2:
a1是char类型从0开始占一个,因为a2是嵌套的结构体所以对齐到自己的最大对齐数整数倍由上面例题可知是4,所以从4开始向后占12个空间大小(上面例题求出S1大小是12),a3是char类型所以向后占一个空间的大小;上图可以看出0-16之间有17个数不是4的倍数,向后一直找直到为4的倍数,向后找3个总大小为20是4的倍数所以答案是20.
相关文章:

结构体对齐规则
1.第一个成员在结构体变量偏移量为0的地址处。 2.其他成员变量对齐到某个数字(对齐数)的整数倍的地址处。(对齐数编译器默认的一个对齐数与该成员大小的较小值)注意:目前有且只有VS编译器有默认为8. 3.结构体总大小为最大对齐数的整数倍。 4.如果嵌套…...

css 如何让元素内部文本和外部文本 一块显示省略号
实际上还是有这样的需求的 <div class"container"><span>啊啊啊啊啊啊啊啊</span>你好啊撒撒啊撒撒撒撒啊撒撒撒撒撒说</div>还是有这样的需求的哦。 div.container {width: 200px;white-space: nowrap;text-overflow: ellipsis;overflow:…...

SQL语句-中级
一、Mysql软件使用 1.启动/停止Mysql服务器 任务管理器 cmd命令:以管理员的身份打开cmd命令行 net start mysql80//开启net stop mysql80//停止 2.连接与断开Mysql服务器 注意要在bin目录下执行:-u用户名root,-p密码 mysql -u root -p 可能出现的…...

巧用h2-database.jar连接数据库
文章目录 一 、概述二、实践三、解决办法 一 、概述 H2 Database是一个开源的嵌入式数据库引擎,采用java语言编写,不受平台的限制,同时H2 Database提供了一个十分方便的web控制台用于操作和管理数据库内容。H2 Database还提供兼容模式&#…...
136.只出现一次的数字
136. 只出现一次的数字 - 力扣(LeetCode) 给你一个 非空 整数数组 nums ,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题,且…...
mysql中遇到查询字段的别名与函数冲突问题
比如以下哎,我查询城市行业数量排名 select City, DENSE_RANK() over(ORDER BY COUNT(Id) DESC) rank, COUNT(Id) num,IndustrySubGroupName from base_companyinfo WHERE IndustrySubGroupName工业机器人 GROUP BY City 上面使用 DENSE_RANK() 函数来计算排名&am…...
直播获奖
题目描述 NOI2130 即将举行。为了增加观赏性, CCF 决定逐一评出每个选手的成 绩,并直播即时的获奖分数线。本次竞赛的获奖率为 𝑤% ,即当前排名前 𝑤% 的选手的最低成绩就是即时的分数线。 更具体地,…...

选择适合自身业务的HTTP代理有哪些因素决定?
相信对很多爬虫工作者和数据采集的企业来说,如何选购适合自己业务的HTTP代理是一个特别特别困扰的选题,市面上那么多HTTP代理厂商,好像这家有这些缺点,转头又看到另外一家的缺点,要找一家心仪的仿佛大海捞针。今天我们…...
1.3 do...while实现1+...100 for实现1+...100
思路:两个变量,一个变量存储数据之和,一个变量实现自增就行 do...while int i, s;i 1;s 0;do{s 1;i;} while (i < 100);cout << s << endl; for int i, j0;for (i 1; i < 100; i){j 1;}cout << j << …...
react数据管理之setState与Props
react数据管理之setState与Props setState调用原理 setState 是 React 中用于更新组件状态(state)的方法。它的调用原理可以分为以下几个步骤: 状态的改变:当调用 setState 时,React 会将新的状态对象与当前状态对象…...

如何保护我们的网络安全
保护网络安全是至关重要的,尤其是在今天的数字化时代。以下是一些保护网络安全的基本步骤: 1、使用强密码:使用包含字母、数字和特殊字符的复杂密码。不要在多个网站上重复使用相同的密码。定期更改密码。 2、启用双因素认证 (2FA)ÿ…...

springboot 制造装备物联及生产管理ERP系统
springboot 制造装备物联及生产管理ERP系统 liu1113625581...

Google zxing 生成带logo的二维码图片
环境准备 开发环境 JDK 1.8SpringBoot2.2.1Maven 3.2 开发工具 IntelliJ IDEAsmartGitNavicat15 添加maven配置 <dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.4.0</version> </…...
使用Python计算平面多边形间最短距离
要计算平面多边形间的最短距离,首先需要导入Excel表格中的多边形数据,然后使用GJK(Gilbert-Johnson-Keerthi)算法来判断两个多边形是否重叠。如果两个多边形不重叠,可以计算它们之间的最短距离。 以下是一个基本的Pyt…...

【Python】Python语言基础(中)
第十章 Python的数据类型 基本数据类型 数字 整数 整数就是整数 浮点数 在编程中,小数都称之为浮点数 浮点数的精度问题 print(0.1 0.2) --------------- 0.30000000000000004 1.可以通过round()函数来控制小数点后位数 round(a b),则表示…...
观察者模式、订阅者发布者模式、vtk中的观察者模式
文章目录 什么是观察者模式vtk是如何实现的观察者模式.AddObserver什么时候使用观察者模式?什么使用订阅发布者模式?观察者模式的实现订阅发布者的实现总结知识补充: 什么是观察者模式 用于在对象之间建立一对多的依赖关系,当一个对象的状态发生变化时…...
关于element-ui中,页面上有多个el-table并通过v-if、v-else等控制是否显示时,type=selection勾选框失效或不显示的问题
刚开始是勾选框那一列直接空了什么都不显示,搜索了一下说是给el-table标签增加id,加了之后是显示了,但是点击任何选框都会直接取消全部选中效果,翻了半天源码也没发现到底是哪里事件冲突了还是怎么回事,烦了࿰…...

Stewart六自由度正解、逆解计算-C#和Matlab程序
目录 一、Stewart并联六自由度正解计算 (一)概况 (二)Matlab正解计算 1、参考程序一 2、参考程序二 (三)C#程序正解计算 1、工程下载链接 2、正解运行计算 (四)正程…...
C语言 驼峰命名法和下划线命名法
在C语言中,变量命名遵循以下规则: 变量名只能由字母、数字和下划线组成。变量名必须以字母或下划线开头。变量名不能使用C语言中的关键字。变量名中不能出现连续的两个下划线。变量名区分大小写,例如,count和Count被视为两个不同…...
大数据学习(8)-hive压缩
&&大数据学习&& 🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博>主哦&#x…...

wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...