当前位置: 首页 > news >正文

[补题记录] Atcoder Beginner Contest 295(E)

URL:https://atcoder.jp/contests/abc295

目录

E

Problem/题意

Thought/思路

Code/代码


E

Problem/题意

给定长度为 N 的数组 A。进行如下操作:

  • 若 Ai = 0,将 Ai 等概率地变为 1 ~ M 中的任意一个数;
  • 对 A 排序;

问第 K 个数地期望是多少。

Thought/思路

概率 DP。(一开始想不明白这个公式,概率论白雪了)

设我们要求的 A[k] = x 且 P[i] 为 x = i 的概率,那么就有如下公式:

E(x) = \sum_{i=1}^{m}i*P(i=x)=\sum_{i=1}^{m}P(x \geqslant i)

 关于这条公式地推导:https://zhuanlan.zhihu.com/p/617048570

因此接下来的问题就变成了:对于每个 i,求出 P(A[k] >= i)。


但是我们不知道 A[k] 该怎么取值,所以还需要将 P(A[k] >= i) 转换为:后面 N - K + 1 个数 >= i 的概率,也就是 [K, N] 中的数都 >= i 的概率。(假设已经排好序)

显然 [K, N] 中的数不会都 >= i,而一般的情况就是:[K, N] 中的前一部分的数 < i、后一部分的数 >= i。


对于前一部分,我们需要依靠 0 来变成 >= i 的数去替换他们,所以记录前一部分的数的个数为 need,这代表了所需要的 0 的最少数量。

也就是说,如果 0 的数量(设为 zero)zero < need,那么就永远不可能满足 [K, N] 中的数都 >= i,概率为 0;反之,如果 need <= 0,就一定满足 [K, N] 中的数都 >= i,概率为 1;


基于概率为 0 的那种情况,就一定能保证 need <= zero。

而 need 是需要的 0 的最少数量,那么我们就可以设:有 need 个 0 变成了 >= i 的数,其带来的概率为:

p(need) = C_{zero}^{need} * P^{need} * (1 - P)^{zero-need}

 其中 P = (m - i + 1) / m,意思是:取出 >= i 的数的概率。

显然一共有 zero 个 0 可以使用,所以考虑 [need, zero] 每一种情况即可。

Code/代码

#include "bits/stdc++.h"#define int long longconst int mod = 998244353;int n, m, k, a[2007], fact[2007], invf[2007];int ksm(int a, int b) {int res = 1;while (b > 0) {if (b & 1) res = res * a % mod;a = a * a % mod;b /= 2;}return res;
}void init() {fact[0] = 1, invf[0] = ksm(1, mod - 2);for (int i = 1; i <= 2000; ++ i) {fact[i] = fact[i - 1] * i % mod;invf[i] = ksm(fact[i], mod - 2) % mod;}
}int C(int x, int y) {if (x < y) return 0;return fact[x] * invf[y] % mod * invf[x - y] % mod;
}signed main() {std::cin >> n >> m >> k;for (int i = 1; i <= n; ++ i) std::cin >> a[i];init();int ans = 0;for (int i = 1; i <= m; ++ i) {int zero = 0, need = n - k + 1;for (int j = 1; j <= n; ++ j) {if (a[j] >= i) need --;if (a[j] == 0) zero ++;}if (need <= 0 or need > zero) { // [k, n] 都 >= i,概率为 1;[k, n] 小于 i 的个数,0 补不上,概率为 0。ans = (ans + (need <= 0 ? 1 : 0)) % mod;continue;}int p1 = (m - i + 1) * ksm(m, mod - 2) % mod; // 选出的数 >= i 的概率 p:(m - i + 1) / mint p2 = (i - 1) * ksm(m, mod - 2) % mod; // 1 - p:(i - 1) / mstd::vector <int> dp1(zero + 1), dp2(zero + 1);dp1[0] = dp2[0] = ksm(1, mod - 2);for (int j = 1; j <= zero; ++ j) {dp1[j] = dp1[j - 1] * p1 % mod;dp2[j] = dp2[j - 1] * p2 % mod;}// 用 0 补充 >= i 的数for (int j = need; j <= zero; ++ j) {ans = (ans + C(zero, j) * dp1[j] % mod * dp2[zero - j] % mod) % mod;}}std::cout << ans;return 0;
}

相关文章:

[补题记录] Atcoder Beginner Contest 295(E)

URL&#xff1a;https://atcoder.jp/contests/abc295 目录 E Problem/题意 Thought/思路 Code/代码 E Problem/题意 给定长度为 N 的数组 A。进行如下操作&#xff1a; 若 Ai 0&#xff0c;将 Ai 等概率地变为 1 ~ M 中的任意一个数&#xff1b;对 A 排序&#xff1b; …...

解决git在window11操作很慢,占用很大cpu的问题

【git在window11操作很慢&#xff0c;占用很大cpu&#xff0c;最后也执行失败】 在谷歌输入&#xff1a;git very slow in window 11。通过下面链接终于找到了解决方案&#xff1a; https://www.reddit.com/r/vscode/comments/sulebx/slow_git_in_wsl_after_updating_to_window…...

C++智能指针(二)——weak_ptr初探

文章目录 1. shared_ptr 存在的问题2. 使用weak_ptr2.1 初始化 weak_ptr2.2 访问数据 3. 附录4. 参考文献 1. shared_ptr 存在的问题 与 shared_ptr 的引入要解决普通指针存在的一些问题一样&#xff0c;weak_ptr 的引入&#xff0c;也是因为 shared_ptr 本身在某些情况下&…...

540 - Team Queue (UVA)

题目链接如下&#xff1a; Online Judge 对比刘汝佳的代码&#xff0c;我没有用queue来排整个队伍&#xff0c;因为那样的话遍历整个队伍太麻烦&#xff0c;vector比较方便。但vector删除元素比较耗时&#xff0c;所以就不删了&#xff0c;仅仅用pivot来指代目前队伍的开始。…...

投资组合之如何估值

文章目录 如何估值一、PE估值法1、PE估值法的定义2、参考标准&#xff08;1&#xff09;常规标准&#xff1a;25倍合理市盈率。&#xff08;2&#xff09;同行业对比。&#xff08;3&#xff09;跟历史市盈率相比。 3、PE估值法的适用范围4、PE估值法的优势5、PE估值法的劣势&a…...

2024届通信工程保研经验分享(预推免入营即offer)

2024届通信工程保研经验分享&#xff08;预推免入营即offer&#xff09; BackGround夏令营情况&#xff1a;预推免情况&#xff1a; BackGround 本科院校&#xff1a;末九 专业&#xff1a;通信工程 rank&#xff1a;3/123&#xff08;预推免绩点排名&#xff09;&#xff0…...

L2-025 分而治之 - java

L2-025 分而治之 时间限制 600 ms 内存限制 64 MB 题目描述&#xff1a; 分而治之&#xff0c;各个击破是兵家常用的策略之一。在战争中&#xff0c;我们希望首先攻下敌方的部分城市&#xff0c;使其剩余的城市变成孤立无援&#xff0c;然后再分头各个击破。为此参谋部提供了若…...

Python+高光谱数据预处理-机器学习-深度学习-图像分类-参数回归

涵盖高光谱遥感数据处理的基础、python开发基础、机器学习和应用实践。重点解释高光谱数据处理所涉及的基本概念和理论&#xff0c;旨在帮助学员深入理解科学原理。结合Python编程工具&#xff0c;专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题&#xf…...

免费 AI 编程助手 Amazon CodeWhisperer 体验

文章作者&#xff1a;文章作者&#xff1a;米菲爸爸 2022 年 6 月 23 亚马逊云科技就已经推出了 Amazon CodeWhisperer&#xff08;预览版&#xff09;。经过不到一年的测试和 AIGC的飓风在 2023 年 4 月 18 日实时 AI 编程助手 Amazon CodeWhisperer正式可用 Amazon CodeWhis…...

【Linux】从零开始学习Linux基本指令(一)

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;Linux入门 &#x1f525;该文章主要了解Linux操作系统下的基本指令。 目录&#xff1a; ⌛️指令的理解⏳目录和文件的理解⏳一些常见指令✉…...

Java GC 算法

一、概述 理解Java虚拟机垃圾回收机制的底层原理&#xff0c;是成为一个高级Java开发者的基本功。本文从底层的垃圾回收算法开始&#xff0c;着重去阐释不同垃圾回收器在算法设计和实现时的一些技术细节&#xff0c;去探索「why」这一部分&#xff0c;通过对比不同的垃圾回收算…...

vue3 v-html中使用v-viewer

安装&#xff1a;npm install v-viewernext 在main.js中配置 import “viewerjs/dist/viewer.css”; import Viewer from “v-viewer”; app.use(Viewer, { Options: { inline: true, //默认值&#xff1a;false。启用内联模式。 button: true, //在查看器的右上角显示按钮。 …...

Leetcode算法解析——查找总价格为目标值的两个商品

1. 题目链接&#xff1a;LCR 179. 查找总价格为目标值的两个商品 2. 题目描述&#xff1a; 商品价格按照升序记录于数组 price。请在购物车中找到两个商品的价格总和刚好是 target。若存在多种情况&#xff0c;返回任一结果即可。 示例 1&#xff1a; 输入&#xff1a;price …...

unity游戏开发引擎unity3D开发

Unity&#xff08;也被称为Unity3D&#xff09;是一款强大的跨平台游戏引擎&#xff0c;用于开发2D和3D游戏&#xff0c;以及其他交互式应用程序。以下是Unity游戏开发的一般步骤&#xff1a; 安装和设置Unity&#xff1a; 首先&#xff0c;您需要下载并安装Unity。确保选择适…...

iptables

目录 iptables 匹配规则&#xff1a;由上到下依次匹配&#xff0c;一旦匹配不再匹配 参数 知识点 REJECT与DROP REJECT与DROP的区别 当使用的时REJECT时&#xff0c;客户端访问迅速返回的值是拒绝连接 当使用的是DROP时&#xff0c;返回的时连接超时 REJECT与drop适用…...

竞赛 深度学习LSTM新冠数据预测

文章目录 0 前言1 课题简介2 预测算法2.1 Logistic回归模型2.2 基于动力学SEIR模型改进的SEITR模型2.3 LSTM神经网络模型 3 预测效果3.1 Logistic回归模型3.2 SEITR模型3.3 LSTM神经网络模型 4 结论5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 …...

Spark入门

目录 Spark入门: 概述历史概述SparkCore&#xff1a;RDDSparkSQL:SparkStreamingSpark内核调优 Spark概述 回顾&#xff1a; Hadoop HDFS存储 MR分析计算 YARN调度 Hadoop的MR计算中的shuffle需要落盘&#xff0c;速度不够快。 Spark是一种基于内存的分析计算引擎。 历史…...

react–antd 实现TreeSelect树形选择组件,实现点开一层调一次接口

效果图: 注意: 当选择“否”&#xff0c;开始调接口&#xff0c;不要把点击调接口写在TreeSelect组件上&#xff0c;这样会导致问题出现&#xff0c;没有层级了 部分代码:...

android 固定进度环形刷新效果

android 固定进度无限旋转的环形效果 效果图 效果视频&#xff1a; Record_2023-10-13-17-17-19[1] Activity 中使用 val rotation: ObjectAnimator ObjectAnimator.ofFloat(progressBar, "rotation", 0f, 360f) rotation.duration 000 // 旋转持续时间为2秒 rot…...

python jieba 词性标注 中文词性分类 nlp jieba.posseg

参考&#xff1a;https://blog.csdn.net/yellow_python/article/details/83991967 from jieba.posseg import dt dt.word_tag_tab[好看] >>> vflag_en2cn { ‘a’: ‘形容词’, ‘ad’: ‘副形词’, ‘ag’: ‘形语素’, ‘an’: ‘名形词’, ‘b’: ‘区别词’, ‘…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...