当前位置: 首页 > news >正文

黑马《数据结构与算法2023版》正式发布

有人的地方就有江湖。

在“程序开发”的江湖之中,各种技术流派风起云涌,变幻莫测,每一位IT侠客,对“技术秘籍”的追求和探索也从未停止过。

要论开发技术哪家强,可谓众说纷纭。但长久以来,确有一技,堪称技术江湖的“易筋经”,略知一二的人很多,出类拔萃、登峰造极的人很少...... 江湖人称——数据结构与算法。

曾有人说,这个东西,如果你不去学,可能一辈子都感受不到它的好。但一旦掌握,就会被它的强大威力所折服。

它是程序员内功体现的重要标准之一;

它是大厂必考的内容,

面试的敲门砖、职场晋升的加速器;

它是许多计算机新行业的重要基石;

它能帮我们解决日常开发中的性能问题;

它能帮助我们理解源码背后的设计思想;

它是底层开发的重要一环,

保证底层系统的稳定性和高效性;

......

总结来说,从功利角度,它是大厂必考,你不可避免,从长远角度,它将决定你的技术上限。

一旦拿下了数据结构与算法,就如同站在巨人的肩膀上,在开发江湖占有一席之地。所以你说,数据结构与算法重不重要?该不该学?

黑马2023年重磅巨作 新版《数据结构与算法》正式发布 3大篇章,超90小时,全部免费

秘籍虽香,但修炼甚难。很多同学都曾被枯燥的数学定义、复杂的理论、难懂的公式劝退过。其实,学不会主要是因为方法不对、教材不对。

针对这些痛点,黑马替你出手了!

经过详细的前期调研,潜心研发,本套教程讲练结合,帮助大家把原本分散的知识融会贯通,另外还将算法理论与实践并重,帮助大家加固对高级算法知识的理解和掌握。

更重要的是,跟着黑马老师的步骤,学到的不仅仅是知识和技术,还能沉浸式领略满老师从更高的算法维度,思考、解决开发问题的方式,思维认知得到巨大提升,达到青出于蓝的效果。

适用人群

· 想入门数据结构与算法的同学;
· 已经工作,想晋升涨薪的同学;
· 金三银四,想跳槽突破的同学;
· 挑战自我,想进阶高级开发的同学。

△ 评论来源B站(如侵删)

独门亮点

1. 内容全面

涉及数据结构与算法的各个方面,包括数组、链表、递归、队列、栈、堆、二叉树、查找算法、排序算法、回溯、贪心、分治、动态规划等等。

2. 深入浅出

重点内容,加长篇幅讲解;难点内容,独创动画辅助理解;强化算法思维等深度内容。

3. 顺序合理

正课与题目交替讲解,更为科学;精心设计讲解顺序,重点知识都有前置铺垫。

详情目录

第一章

001-二分查找-算法描述

002-算法实现

003-问题1-循环条件

004-问题2-中间索引

005-问题3-比较符号

006-改动版

007-如何衡量算法好坏-1

008-如何衡量算法好坏-2

009-时间复杂度-大O表示法-1

010-时间复杂度-大O表示法-2

011-如何衡量算法好坏-3

012-二分查找-平衡版

013-Java版

014-LeftRightmost

015-LeftRightmost-返回值

016-LeftRightmost-应用

017-e01-二分查找

017-e02-搜索插入位置

017-e03-搜索开始结束位置

018-数组-概述

019-动态数组-介绍

020-插入

021-遍历

022-删除

023-扩容

024-二维数组

025-数组-缓存与局部性原理

026-链表-概述

027-单向链表-addFirst

028-遍历

029-addLast

030-get

031-insert

032-removeFirst

033-remove

034-带哨兵-1

035-带哨兵-2

036-双向链表-带哨兵-1

037-带哨兵-2

038-双向环形链表-带哨兵-1

039-带哨兵-2

040-链表-递归遍历

041-递归-定义

042-阶乘

043-反向打印字符串

044-e03-二分查找

044-e04-冒泡排序1

044-e04-冒泡排序2

044-e05-插入排序1

044-e05-插入排序2

045-多路递归-斐波那契

046-时间复杂度

047-兔子问题

048-青蛙跳台阶

049-递归-优化-记忆法

050-爆栈问题

051-尾调用与尾递归

052-尾递归避免爆栈

053-主定理求时间复杂度-1

054-主定理求时间复杂度-2

055-展开求时间复杂度-1

056-展开求时间复杂度-2

057-多路递归-e02-汉诺塔1

057-e02-汉诺塔2

057-e03-杨辉三角1

057-e03-杨辉三角2

057-e03-杨辉三角3

058-链表-e01-反转单向链表1

058-e01-反转单向链表2

058-e01-反转单向链表3-递归

058-e01-反转单向链表4

058-e01-反转单向链表5

058-e02-根据值删除节点1

058-e02-根据值删除节点2-递归

058-e03-删除倒数节点1-递归

058-e03-删除倒数节点2

058-e04-有序链表去重1

058-e04-有序链表去重2-递归

058-e05-有序链表去重1-递归

058-e05-有序链表去重2

058-e06-合并有序链表1

058-e06-合并有序链表2

058-e07-合并多个有序链表

058-e08-查找链表中间节点

058-e09-判断回文链表1

058-e09-判断回文链表2

058-e10-判环算法1

058-链表-e10-判环算法2

059-数组-e01-合并有序数组1

059-数组-e01-合并有序数组2

060-队列-链表实现-1

061-队列-链表实现-2

062-队列-环形数组实现-方法1-1

063-方法1-2

064-方法2

065-方法3-1

066-方法3-2

067-方法3-3

068-方法3-4

069-队列-e01-二叉树层序遍历1

069-队列-e01-二叉树层序遍历2

070-栈-链表实现

071-栈-数组实现

072-栈-e01-有效的括号

072-e02-后缀表达式求值

072-e03-中缀表达式转后缀1

072-e03-中缀表达式转后缀2

072-e03-中缀表达式转后缀3

072-e04-双栈模拟队列

072-e05-单队列模拟栈

073-双端队列-链表实现-1

074-链表实现-2

075-数组实现-1

076-数组实现-2

077-数组实现-3

078-双端队列-e01-二叉树Z字层序遍历

079-优先级队列-无序数组实现

080-有序数组实现

081-堆实现-1

082-堆实现-2

083-堆实现-3

084-优先级队列-e01-合并多个有序链表1

084-优先级队列-e01-合并多个有序链表2

085-阻塞队列-问题提出

086-单锁实现-1

087-单锁实现-2

088-单锁实现-3

089-单锁实现-4

090-单锁实现-5

091-双锁实现-1

092-双锁实现-2

093-双锁实现-3

094-双锁实现-4

095-双锁实现-5

096-堆-heapify-1

097-heapify-2

098-heapify-3

099-增-删-替换

100-堆-e01-堆排序

100-e02-求数组第k大元素

100-e03-求数据流第k大元素

100-e04-求数据流中位数1

100-e04-求数据流中位数2

100-e04-求数据流中位数3

以上仅是冰山一角   更多高级知识持续更新中……

时值招聘黄金期,如何独领风骚?

本套《数据结构与算法》高级教程

恰是你四两拨千斤的得力法宝

有同学可能会惊叹:

还没更新完目录就这么长

等学完孩子都会敲 "Hello World" 了

如果你每天学一点,十天就学了十点

坚持一个月,你会发现你已经学了一个月

(废话文学,手动狗头)

第一章部分内容已上传

后续课程正在加急制作中

学习上乘武功这事,切不可操之过急

跟着老师的步骤,循序渐进即可

相关文章:

黑马《数据结构与算法2023版》正式发布

有人的地方就有江湖。 在“程序开发”的江湖之中,各种技术流派风起云涌,变幻莫测,每一位IT侠客,对“技术秘籍”的追求和探索也从未停止过。 要论开发技术哪家强,可谓众说纷纭。但长久以来,确有一技&#…...

Spring的创建和使用

目录 创建Spring项目 步骤 1)使用Maven的方式创建Spring项目 2)添加Spring依赖 3)创建启动类 存Bean对象 1.创建Bean对象 2.将Bean注册到Spring中 取Bean对象并使用 步骤 1.先得到Spring上下文对象 2.从Spring中获取Bean对象 3.使用Bean ApplicationContext VS Bea…...

如何实现外网跨网远程控制内网计算机?快解析来解决

远程控制,是指管理人员在异地通过计算机网络异地拨号或双方都接入Internet等手段,连通需被控制的计算机,将被控计算机的桌面环境显示到自己的计算机上,通过本地计算机对远方计算机进行配置、软件安装程序、修改等工作。通俗来讲&a…...

【跟着ChatGPT学深度学习】ChatGPT教我文本分类

【跟着ChatGPT学深度学习】ChatGPT教我文本分类 ChatGPT既然无所不能,我为啥不干脆拜他为师,直接向他学习,岂不是妙哉。说干就干,我马上就让ChatGPT给我生成了一段文本分类的代码,不看不知道,一看吓一跳&am…...

IM即时通讯架构技术:可靠性、有序性、弱网优化等

消息的可靠性是IM系统的典型技术指标,对于用户来说,消息能不能被可靠送达(不丢消息),是使用这套IM的信任前提。 换句话说,如果这套IM系统不能保证不丢消息,那相当于发送的每一条消息都有被丢失的…...

【算法】三道算法题两道难度中等一道困难

算法目录只出现一次的数字(中等难度)java解答参考二叉树的层序遍历(难度中等)java 解答参考给表达式添加运算符(比较困难)java解答参考大家好,我是小冷。 上一篇是算法题目 接下来继续看下算法题…...

正交实验与极差分析

正交试验极差分析流程如下图: 正交试验说明 正交试验是研究多因素试验的设计方法。对于多因素、多水平的实验要求,如果每个因素的每个水平都要进行试验,这样就会耗费大量的人力和时间,正交试验可以选择出具有代表性的少数试验进行…...

DEXTUpload .NET增强的上传速度和可靠性

DEXTUpload .NET增强的上传速度和可靠性 DEXTUpload.NET Pro托管在Windows操作系统上的Internet Information Server(IIS)上,服务器端组件基于HTTP协议,支持从web浏览器到web服务器的文件上载。它也可以在ASP.NET服务器应用程序平台开发的任何网站上使用…...

SkyWalking 将方法加入追踪链路(@Trace)

SkyWalking8 自定义链路追踪@Trace 自定义链路,需要依赖skywalking官方提供的apm-toolkit-trace包.在pom.xml的dependencies中添加如下依赖: <dependency><groupId>org.apache.skywalking</groupId><artifactId>apm-toolkit-trace</artifactId>&…...

MySQL Administrator定时备份MySQL数据库

1、下载并安装软件mysql-gui-tools-5.0-r17-win32.exe 2、将汉化包zh_CN文件夹拷贝到软件安装目录 3、菜单中打开MySql Adminstrator&#xff0c;见下图&#xff0c;初次打开无服务实例。 点击已存储连接右侧按钮①&#xff0c;打开下图对话框。点击“新连接”按钮&#xff…...

Kubernetes入门教程 --- 使用二进制安装

Kubernetes入门教程 --- 使用二进制安装1. Introduction1.1 架构图1.2 关键字介绍1.3 简述2. 使用Kubeadm Install2.1 申请三个虚拟环境2.2 准备安装环境2.3 配置yum源2.4 安装Docker2.4.1 配置docker加速器并修改成k8s驱动2.5 时间同步2.6 安装组件3. 基础知识3.1 Pod3.2 控制…...

深度学习模型压缩方法概述

一,模型压缩技术概述 1.1,模型压缩问题定义 因为嵌入式设备的算力和内存有限,因此深度学习模型需要经过模型压缩后,方才能部署到嵌入式设备上。 模型压缩问题的定义可以从 3 角度出发: 模型压缩的收益: 计算: 减少浮点运算量(FLOPs),降低延迟(Latency)存储: 减少内…...

《NFL橄榄球》:坦帕湾海盗·橄榄1号位

坦帕湾海盗&#xff08;英语&#xff1a;Tampa Bay Buccaneers&#xff09;是一支位于佛罗里达州的坦帕湾职业美式橄榄球球队。他们是全国橄榄球联盟的南区其中一支球队。在1976年&#xff0c;与西雅图海鹰成为NFL的球队。球队在最初的两个球季连败26场&#xff0c;在二十世纪七…...

Xmake v2.7.7 发布,支持 Haiku 平台,改进 API 检测和 C++ Modules 支持

layout: post.cn title: “Xmake v2.7.7 发布&#xff0c;支持 Haiku 平台&#xff0c;改进 API 检测和 C Modules 支持” tags: xmake lua C/C package modules haiku cmodules categories: xmake Xmake 是一个基于 Lua 的轻量级跨平台构建工具。 它非常的轻量&#xff0c;没…...

苹果ios签名证书的生成方法

在使用hbuilderx打包uniapp或html5应用的时候&#xff0c;假如是打包ios应用&#xff0c;是需要ios签名证书&#xff0c;和证书profile文件的&#xff0c;这个证书要求是p12格式的证书&#xff0c;profile文件又叫描述文件。 这两个文件&#xff0c;需要在苹果开发者中心生成&…...

c++开发配置常用网站记录

1.ubuntu 镜像源&#xff1a; (1) 清华源&#xff1a;https://mirror.tuna.tsinghua.edu.cn/help/ubuntu/ (2) 阿里源&#xff1a;https://developer.aliyun.com/mirror/ubuntu?spma2c6h.13651102.0.0.3e221b11VuM27s 包含了ubuntu各个版本的source源 2.ubuntu iso镜像下载…...

DC-1 靶场学习

以前写过了&#xff0c;有一些忘了&#xff0c;快速的重温一遍。 DC一共九个靶场&#xff0c;目标一天一个。 文章目录环境配置&#xff1a;信息搜集&#xff1a;漏洞复现&#xff1a;FLAG获取环境配置&#xff1a; 最简单的办法莫过于将kali和DC-1同属为一个nat的网络下。 信…...

oracle 不使用索引深入解析

首先&#xff0c;我们要确定数据库运行在何种优化模式下&#xff0c;相应的参数是&#xff1a;optimizer_mode。缺省的设置应是"choose"&#xff0c;即如果对已分析的表查询的话选择CBO&#xff0c;否则选择RBO。如果该参数设为“rule”&#xff0c;则不论表是否分析…...

什么是自助式BI工具,有没有推荐

为什么需要自助式BI&#xff1f; 传统的BI采用的是“业务提报表需求&#xff0c;IT进行开发”的模式。决策管理者和业务人员提出用报表等来展示经营管理数据的需求&#xff1b;接着IT响应需求&#xff0c;进行需求沟通、数据处理加工、报表开发等主体工作&#xff1b;最后决策管…...

如何高效管理自己的时间,可以从这几个方向着手

如果你是上班族&#xff0c;天选打工人&#xff0c;你的绝大多数时间都属于老板&#xff0c;能够自己支配的时间其实并不多&#xff0c;所以你可能察觉不到时间管理的重要性。但如果你是自由职业者或者创业者&#xff0c;想要做出点成绩&#xff0c;那你就需要做好时间管理&…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...