当前位置: 首页 > news >正文

论文浅尝 | 深度神经网络的模型压缩

b7b0e8d46841639bfee3cc163c3ebcd7.png

笔记整理:闵德海,东南大学硕士,研究方向为知识图谱

链接:https://arxiv.org/abs/1412.6550

动机

提高神经网络的深度通常可以提高网络性能,但它也使基于梯度的训练更加困难,因为更深的网络往往更加强的非线性。最近提出的知识蒸馏方法旨在获得小型和快速执行的模型,它已经表明参数量较小的学生网络可以较好的模仿更大的教师网络或网络集群的Soft Output。

在本文中,我们扩展了这一思想,允许训练一个比教师模型更深更薄的学生模型,不仅使用输出层的信息,还使用教师模型学习到的中间表示作为提示,以改善学生模型的训练过程和最终表现。由于学生模型中间隐含层一般会小于教师模型中间隐含层,因此引入附加参数将学生模型隐含层映射到教师隐含层的预测。

这使得我们可以训练更深的学生模型,他们可以更好地泛化或者运行得更快(这由所选学生模型的能力的权衡控制)。例如,在CIFAR-10上,我们完成了一个参数少近10.4倍的深度学生网络比一个更大、最先进的教师网络表现更好。

主要解决的问题

论文主要针对Hinton提出的知识蒸馏法进行扩展,允许Student网络可以比Teacher网络更深更窄,使用teacher网络的输出和中间层的特征作为提示,改进训练过程和student网络的性能。

贡献

(1)引入了intermediate-level hints来指导学生模型的训练。

(2)使用一个宽而浅的教师模型来训练一个窄而深的学生模型。

(3)在进行hint引导时,提出使用一个层来匹配hint层和guided层的输出shape,这在后人的工作里面常被称为adaptation layer。

方法

1. Hint-Based Training

将教师的hint layer作为监督,学生的guided layer作为被监督的对象,希望guided layer可以尽可能地去预测到hint layer的输出。

HT Loss表示如下:

e9eff017fad50fc0df2ca229c97bb0cd.png

作者使用了一个回归层r(对应下图b中的Wr), 来对齐特征的shape。

b170cd99474ce5385b2dd09ecfd235a8.png

图1 模型的训练框架

此外,本文作者认为使用hint来进行引导是一种正则化手段,学生guided层越深,那么正则化作用就越明显,为了避免过度正则化,需要仔细选择hint和guided。

2. FITNET STAGE-WISE TRAINING

分成两个阶段

(1)使用训练好的教师模型和随机初始化的学生模型,在第一阶段,用教师的hint来预训练学生的guided layer及之前的层。

(2)第二个阶段,使用经典的KD loss来对整个网络进行训练,KD loss为:

cd46c653890d747b5666a797586bec6e.png

整体的蒸馏算法如下:

b895b5f226799653737101fa5b92f120.png

图2 蒸馏算法的伪代码

实验

1. 数据集

CIFAR-10:为了验证我们的方法,我们训练了一个最大输出卷积层的教师网络,设计了一个17层最大输出卷积层的FitNet,接着是一个最大输出全连接层和一个顶部的softmax层,大约有1/3的参数。学生网络的第11层被训练成模仿教师网络的第2层。在训练期间,我们使用随机翻转来增强数据。

SVHN: 由GoogleStreet View收集的32×32彩色房屋号码图像组成。训练集中有73,257张图像,测试集中有26,032张图像,还有531,131个较不困难的示例。我们训练了一个由11个最大输出卷积层、一个全连接层和一个softmax层组成的13层FitNet。

2. 结果

CIFAR-10数据集

c66f45d4362533b3d5d8366bb3a279a5.png

表1 CIFAR-10的准确率表现

表1总结了获得的结果。我们的学生模型胜过教师模型,同时需要明显较少的参数,这表明深度对于实现更好的表示至关重要。与网络压缩方法相比,我们的算法取得了出色的结果。即,学生网络的准确率达到91.61%,比之前的最佳表现者85.8%高得多,同时需要大约28倍的参数。与最先进的方法相比,我们的算法匹配了最佳的表现者。有人可能会质疑使用宽教师网络的隐藏状态来提示内部层的选择。一个直接的替代方案是使用所需的输出来提示它们。这可以通过几种不同的方式解决:(1)阶段性训练,其中第1阶段优化网络的前半部分以实现分类目标,第2阶段优化整个网络以实现分类目标。在这种情况下,第1阶段设置了网络参数的一个良好局部极小值,但此初始化似乎不能充分帮助第2阶段学习,导致它无法学习。

SVHN数据集

dab93ad32dd25c9b1f43feea614d48a3.png

表2 SVHN的错误率

表2的数据表明尽管使用的只有教师网络容量的32%,但我们的FitNet实现了与教师网络相当的准确性。我们的FitNet在性能方面与其他最先进的方法(如Maxout和Network in Network)相当。

总结

本研究提出了一种新的框架,通过引入来自教师隐藏层的中间层提示来压缩宽而深的网络为更薄更深的网络。能够使用这些提示来训练具有更少参数的非常深的学生模型,这些模型可以比其教师模型更好地泛化和/或更快地运行。本研究提供了实证证据,表明使用教师网络的隐藏状态提示薄而深的网络的内部层比使用分类目标提示更好地泛化。在基准数据集上的实验强调,具有低容量的深度网络能够提取与具有多达10倍参数的网络相当甚至更好的特征表示。基于提示的训练表明,应更加努力地探索新的训练策略,以利用深度网络的强大力量。


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

1336c9cf3239b036240ce4d125f6fea4.png

点击阅读原文,进入 OpenKG 网站。

相关文章:

论文浅尝 | 深度神经网络的模型压缩

笔记整理:闵德海,东南大学硕士,研究方向为知识图谱 链接:https://arxiv.org/abs/1412.6550 动机 提高神经网络的深度通常可以提高网络性能,但它也使基于梯度的训练更加困难,因为更深的网络往往更加强的非线…...

进阶JAVA篇- DateTimeFormatter 类与 Period 类、Duration类的常用API(八)

目录 1.0 DateTimeFormatter 类的说明 1.1 如何创建格式化器的对象呢? 1.2 DateTimeFormatter 类中的 format(LocalDateTime ldt) 实例方法 2.0 Period 类的说明 2.1 Period 类中的 between(localDate1,localDate2) 静态方法来创建对象。 3.…...

1.1 Windows驱动开发:配置驱动开发环境

在进行驱动开发之前,您需要先安装适当的开发环境和工具。首先,您需要安装Windows驱动开发工具包(WDK),这是一组驱动开发所需的工具、库、示例和文档。然后,您需要安装Visual Studio开发环境,以便…...

Jetpack:009-kotlin中的lambda、匿名函数和闭包

文章目录 1. 概念介绍2. 使用方法2.1 函数类型的变量2.2 高阶函数 3. 内容总结4.经验分享 我们在上一章回中介绍了Jetpack中Icon和Imamg相关的内容,本章回中主要介绍Kotlin中的 lambda、匿名函数和闭包。闲话休提,让我们一起Talk Android Jetpack吧&…...

openGauss指定schema下全部表结构备份与恢复

本次测试针对openGauss版本为2.0.5 gs_dump指定schema下全部表结构信息备份 gs_dump database_name -U username -p port -F c -s -n schema_name -f schema.sqldatabase_name:数据库名,要备份的数据库名称 username:用户名,数据…...

干货:如何在前端统计用户访问来源?

在前端统计用户访问来源是一个常见的需求,通过获取访问来源信息,我们可以了解用户是通过直接访问、搜索引擎、外部链接等途径进入我们的网站或应用。下面是一个详细的介绍,包括方法和实现步骤。 一、获取HTTP Referer HTTP Referer是HTTP请…...

李宏毅生成式AI课程笔记(持续更新

01 ChatGPT在做的事情 02 预训练(Pre-train) ChatGPT G-Generative P-Pre-trained T-Transformer GPT3 ----> InstructGPT(经过预训练的GPT3) 生成式学习的两种策略 我们在使用ChatGPT的时候会注意到,网站上…...

nodejs+vue+elementui酒店客房服务系统mysql带商家

视图层其实质就是vue页面,通过编写vue页面从而展示在浏览器中,编写完成的vue页面要能够和控制器类进行交互,从而使得用户在点击网页进行操作时能够正常。 简单的说 Node.js 就是运行在服务端的 JavaScript。 前端技术:nodejsvueel…...

【网络协议】聊聊网络分层

常用的网络协议 首先我们输入www.taobao.com,会先经过DNS进行域名解析,转换为59.82.122.115的公网IP地址。然后就会发起请求,一般来说非加密的使用http,加密的使用https。上面是在应用层做的处理,那么接下来就是到传输…...

[开源]基于Vue+ElementUI+G2Plot+Echarts的仪表盘设计器

一、开源项目简介 基于SpringBoot、MyBatisPlus、ElementUI、G2Plot、Echarts等技术栈的仪表盘设计器,具备仪表盘目录管理、仪表盘设计、仪表盘预览能力,支持MySQL、Oracle、PostgreSQL、MSSQL、JSON等数据集接入,对于复杂数据处理还可以使用…...

html设置前端加载动画

主体思路参考: 前端实现页面加载动画_边城仔的博客-CSDN博客 JS图片显示与隐藏案例_js控制图片显示隐藏-CSDN博客 1、编写load.css /* 显示加载场景 */ .loadBackGround{position: absolute;top: 0px;text-align: center;width: 100%;height: 100vh;background-c…...

【git的使用方法】——上传文件到gitlab仓库

先进入到你克隆下来的仓库的目录里面 比如:我的仓库名字为zhuox 然后将需要上传推送的文件拷贝到你的克隆仓库下 这里的话我需要拷贝的项目是t3 输入命令ls,就可以查看该文件目录下的所有文件信息 然后输入git add 文件名 我这边输入的是 &#x…...

Kafka 开启SASL/SCRAM认证 及 ACL授权(二)ACL

Kafka 开启SASL/SCRAM认证 及 ACL授权(二)ACL。 官网地址:https://kafka.apache.org/ kafka authentorization:https://docs.confluent.io/platform/current/kafka/authorization.html 一、开启ZK ACL(可选,内网环境,用户无机器访问权限时) 给kafka meta都加上zk的ac…...

Java8 新特性之Stream(三)-- Stream的终结操作

目录 1.forEach(Consumer) 2.reduce(BinaryOperator) 3.max([Comparator]) 4.min([Comparator]) 5.count() 6.findFirst() 7.findAny() 拓展:...

【Vue面试题二十八】、vue要做权限管理该怎么做?如果控制到按钮级别的权限怎么做?

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 面试官:vue要做权限管理该怎么做…...

1、验证1101序列(Moore)

题目要求: 用Moore型状态机验证1101序列。 题目描述: 用使用状态机验证1101序列,注意:允许重复子序列。如图 端口描述: module moore_1101(input clk,//时钟信号input clr,//reset复位信号,高电平有效in…...

Java基础面试-BeanFactroy和ApplicationContext

ApplicationContext是BeanFactory的子接口 ApplicationContext提供了更完整的功能: 继承MessageSource,因此支持国际化。统一的资源文件访问方式。提供在监听器中注册bean的事件。同时加载多个配置文件。载入多个(有继承关系)上下文,使得每一个上下文都…...

js的入口函数

JavaScript的入口函数是指在HTML页面加载完毕后,JavaScript代码开始执行的函数。这个函数一般被称为onload函数,它的作用是在页面加载完成后执行一些初始化操作,或者对页面进行动态修改。 在HTML页面中,可以通过以下方式设置入口…...

[cpp primer随笔] 10. 函数重载与重载决议

本篇将介绍C函数重载的概念,及重载决议规则。 一、函数重载 同一作用域内,函数名相同,而形参列表不同的函数称之为重载函数(overloaded function)。 需要特别注意:以下情况看似形参列表不同,实则等价,无法…...

java_Stream API

文章目录 一、Stream API vs 集合二、Stream 使用的执行流程2.1、创建Stream2.1、中间操作2.1.1. filter2.1.2. limit2.1.3. skip2.1.4. distinct2.1.5. map2.1.6. sorted 一、Stream API vs 集合 Stream API 关注的是多个数据的计算(排序、查找、过滤、映射、遍历…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...

字符串哈希+KMP

P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...

表单设计器拖拽对象时添加属性

背景&#xff1a;因为项目需要。自写设计器。遇到的坑在此记录 使用的拖拽组件时vuedraggable。下面放上局部示例截图。 坑1。draggable标签在拖拽时可以获取到被拖拽的对象属性定义 要使用 :clone, 而不是clone。我想应该是因为draggable标签比较特。另外在使用**:clone时要将…...