当前位置: 首页 > news >正文

torch.hub.load报错urllib.error.HTTPError: HTTP Error 403: rate limit exceeded

在运行DINOv2的示例代码时,需要载入预训练的模型,比如:

backbone_model = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=backbone_name)

torch.hub.load报错“urllib.error.HTTPError: HTTP Error 403: rate limit exceeded”,具体报错信息如下:

Traceback (most recent call last):
  File "/data1/domainnet/dinov2/demo.py", line 15, in <module>
    backbone_model = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=backbone_name)
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/site-packages/torch/hub.py", line 555, in load
    repo_or_dir = _get_cache_or_reload(repo_or_dir, force_reload, trust_repo, "load",
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/site-packages/torch/hub.py", line 222, in _get_cache_or_reload
    _validate_not_a_forked_repo(repo_owner, repo_name, ref)
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/site-packages/torch/hub.py", line 181, in _validate_not_a_forked_repo
    response = json.loads(_read_url(Request(url, headers=headers)))
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/site-packages/torch/hub.py", line 164, in _read_url
    with urlopen(url) as r:
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/urllib/request.py", line 214, in urlopen
    return opener.open(url, data, timeout)
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/urllib/request.py", line 523, in open
    response = meth(req, response)
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/urllib/request.py", line 632, in http_response
    response = self.parent.error(
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/urllib/request.py", line 561, in error
    return self._call_chain(*args)
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/urllib/request.py", line 494, in _call_chain
    result = func(*args)
  File "/root/miniconda3/envs/dinov2-extras/lib/python3.9/urllib/request.py", line 641, in http_error_default
    raise HTTPError(req.full_url, code, msg, hdrs, fp)
urllib.error.HTTPError: HTTP Error 403: rate limit exceeded

据说这个是PyTorch部分版本的Bug,可以在torch.hub相关代码前加一行,如下:

torch.hub._validate_not_a_forked_repo = lambda a, b, c: Truebackbone_model = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=backbone_name)

问题解决。

相关文章:

torch.hub.load报错urllib.error.HTTPError: HTTP Error 403: rate limit exceeded

在运行DINOv2的示例代码时&#xff0c;需要载入预训练的模型&#xff0c;比如&#xff1a; backbone_model torch.hub.load(repo_or_dir"facebookresearch/dinov2", modelbackbone_name) torch.hub.load报错“urllib.error.HTTPError: HTTP Error 403: rate limit…...

测试左移右移-理论篇

目录 前言一、浅解左移1.什么是测试左移&#xff1f;1.1对产品1.2对开发1.3对测试1.4对运维 二、浅解右移1.1对产品1.2对开发1.3对测试1.4对运维 三、总结 前言 测试左移右移&#xff0c;很多人说能让测试更拥有主动权&#xff0c;展示出测试岗位也是有很大的价值&#xff0c;…...

【TensorFlow2 之015】 在 TF 2.0 中实现 AlexNet

一、说明 在这篇文章中&#xff0c;我们将展示如何在 TensorFlow 2.0 中实现基本的卷积神经网络 \(AlexNet\)。AlexNet 架构由 Alex Krizhevsky 设计&#xff0c;并与 Ilya Sutskever 和 Geoffrey Hinton 一起发布。并获得Image Net2012竞赛中冠军。 教程概述&#xff1a; 理论…...

Python进阶之迭代器

文章目录 前言一、迭代器介绍及作用1.可迭代对象2. 迭代器 二、常用函数和迭代器1.常用函数2.迭代器 三、总结结束语 &#x1f482; 个人主页:风间琉璃&#x1f91f; 版权: 本文由【风间琉璃】原创、在CSDN首发、需要转载请联系博主&#x1f4ac; 如果文章对你有帮助、欢迎关注…...

Vue鼠标右键画矩形和Ctrl按键多选组件

效果图 说明 下面会贴出组件代码以及一个Demo&#xff0c;上面的效果图即为Demo的效果&#xff0c;建议直接将两份代码拷贝到自己的开发环境直接运行调试。 组件代码 <template><!-- 鼠标画矩形选择对象 --><div class"objects" ref"objectsR…...

【MySQL JDBC】使用Java连接MySQL数据库

一、什么是JDBC&#xff1f; 理解API的概念 API&#xff1a;Application Programing Interface -- 应用程序编程接口写好一个程序&#xff0c;这个程序需要给别人提供哪些功能&#xff1f;这些功能就是通过一些 函数/类 这样的方式来提供的。例如 Random、Scanner、ArrayList..…...

字节码学习之常见java语句的底层原理

文章目录 前言1. if语句字节码的解析 2. for循环字节码的解析 3. while循环4. switch语句5. try-catch语句6. i 和i的字节码7. try-catch-finally8. 参考文档 前言 上一章我们聊了《JVM字节码指令详解》 。本章我们学以致用&#xff0c;聊一下我们常见的一些java语句的特性底层…...

Godot C#连接信号不能像GDScirpt一样自动添加代码

前言 我网上找了好久&#xff0c;发现Godot 对于C# 的支持还有待增强 使用c#脚本有办法像gds那样连接节点自带信号时自动生成信号吗&#xff1f; 百度贴吧 Godot C# How To, Episode 9. Signals With Parameters | Godot Mono 解决方案 把信号拉长&#xff0c;看他的属性 修…...

快速自动化处理JavaScript渲染页面

在进行网络数据抓取时&#xff0c;许多网站使用了JavaScript来动态加载内容&#xff0c;这给传统的网络爬虫带来了一定的挑战。本文将介绍如何使用Selenium和ChromeDriver来实现自动化处理JavaScript渲染页面&#xff0c;并实现有效的数据抓取。 1、Selenium和ChromeDriver简介…...

通过API接口进行商品价格监控,可以按照以下步骤进行操作

要实现通过API接口进行商品价格监控&#xff0c;可以按照以下步骤进行操作&#xff1a; 申请平台账号并选择API接口&#xff1a;根据需要的功能&#xff0c;选择相应的API接口&#xff0c;例如商品API接口、店铺API接口、订单API接口等&#xff0c;这一步骤通常需要我们在相应…...

(vue3)大事记管理系统 文章管理页

[element-plus进阶] 文章列表渲染&#xff08;带搜索&到分页&#xff09; 表单架设&#xff1a;当前el-form标签配置一个inline属性&#xff0c;里面的元素就会在一行显示了 中英国际化处理&#xff1a;App.vue中el-config-provider标签包裹组件&#xff0c;意味着整个组…...

springboot 使用RocketMQ客户端生产消费消息DEMO

创建springboot项目省略 项目依赖 注意&#xff1a;当前客户端版本是 5.1.3 &#xff0c;安装的rocketmq服务的版本要与其对应 <properties><java.version>11</java.version><rocketmq-client-java-version>5.1.3</rocketmq-client-java-version&…...

第三章 内存管理 四、连续分配管理方式

目录 一、内存空间的分配与回收 1、连续分配管理方式 &#xff08;1&#xff09;、单一连续分配 优点&#xff1a; 缺点&#xff1a; &#xff08;2&#xff09;、固定分区分配 分区大小相等&#xff1a; 分区大小不等&#xff1a; &#xff08;3&#xff09;、动态分区…...

npm install报--4048错误和ERR_SOCKET_TIMEOUT问题解决方法之一

一、问题描述 学习vue数字大屏加载动漫效果时&#xff0c;在项目终端页面输入全局下载指令 npm install -g json-server 问题1、报--4048错误 会报如下错误 operation not permitted......errno: -4048code:EPERMsyscall: mkdir......The operation was reiected by your op…...

合并两个有序数组

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2&#xff0c;另有两个整数 m 和 n &#xff0c;分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中&#xff0c;使合并后的数组同样按 非递减顺序 排列。 注意&#xff1a;最终&#xff0c;合并后数组…...

自动泊车系统设计学习笔记

1 概述 1.1 自动泊车系统研究现状 目前对于自动泊车系统的研究方法通常有两种实现方式&#xff1a; 整个泊车操作可以分为四个阶段&#xff1a;第一阶段车辆向前行驶进行车位识别&#xff0c;第二阶段车辆行驶到准备泊车时的待泊车区域&#xff0c;第三阶段车辆按照规划好的…...

基于Java的家电销售网站管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域…...

设计模式~备忘录模式(memento)-22

目录  (1)优点&#xff1a; (2)缺点&#xff1a; (3)使用场景&#xff1a; (4)注意事项&#xff1a; (5)应用实例&#xff1a; 代码 备忘录模式(memento) 备忘录模式&#xff08;Memento Pattern&#xff09;保存一个对象的某个状态&#xff0c;以便在适当的时候恢复对…...

【Agora UID 踩坑记录 Java 数据类型】

目录 负数二进制表示Java中32位无符号数的取法项目踩坑记录Java 0xffffffff隐式类型转换的坑 负数二进制表示 由于计算机中数据都以二进制表示&#xff0c;而负数的二级制是根据正数二进制取补码&#xff08;补码就是先取反码&#xff0c;然后加1&#xff09;得到&#xff0c;…...

ESP8285 RTOS SDK OTA

一、官方资源说明 官方指南&#xff1a;空中升级 (OTA) - ESP32 - — ESP-IDF 编程指南 v4.3.6 文档&#xff0c;虽然是正对ESP32的&#xff0c;但是原理是一样的。 官方参考例程&#xff1a;esp-idf\ESP8266_RTOS_SDK\examples\system\ota\&#xff0c;其中包含两个例程&…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...