浅谈机器学习中的概率模型
浅谈机器学习中的概率模型
其实,当牵扯到概率的时候,一切问题都会变的及其复杂,比如我们监督学习任务中,对于一个分类任务,我们经常是在解决这样一个问题,比如对于一个n维的样本 X = [ x 1 , x 2 , . . . . . x n ] X=[x_1,x_2,.....x_n] X=[x1,x2,.....xn],我们想知道它的类别,这个时候我们可以采用概率模型,比如贝叶斯模型,但是,我们知道样本 X X X属于什么类别,可能跟他的所有特征有关,同时,他的所有特征可能又存在着及其复杂的联系,所以如果我们真的考虑特征之间各种复杂的关系,在计算P(y|X)这个概率时往往很困难,因为我们在求解这样的一个概率模型时,还需要考虑样本特征之间的及其复杂的联系。
所以,我们所采用的方法往往是假设样本特征之间是独立的,这样,去求解我们的问题。而且往往这样的做法有时候也可以有着不错的效果。
之所以会有这样的原因,是因为比如两个特征之间有着正相关或者负相关的关系,那么通过上面的方法,虽然没有考虑特征之间的关系,但是特征对于样本分类的影响还是会很大程度的考虑其中,所以,往往我们假设特征之间是独立的,去进行建模往往也可以取得很好的成绩,因为在建模的时候,特征之间的相关性对于样本分类的影响,会被考虑到。
还一种在概率论中的处理在马尔可夫模型中可以体现,其在考虑一个序列之间的关系时,只考虑相邻的。
在博主看来,我们去进行一些概率计算的简化时,需要考虑是否这种简化对于我们的任务有着较大的影响,我们的模型是否在建模的时候,即使由于概率计算的简化导致信息流失,但是模型可以很大程度,去弥补这种信息流失。
我举一个很好的例子:
比如一个人 w-体重 70kg h-身高180cm f-颜值打分90 s-形象打分95 现在根据这个四个值去探讨这个人是否被一个陌生人习惯的概率
我们知道 身高 颜值打分 形象打分 这三个数值明显是有关系的,身高会影响形象打分,颜值也会影响形象打分,那假设这四个特征独立,其实并不影响我们的建模,比如一个人最终被人喜欢的打分模型为(理想的打分模型):
P=0.1w+h+1.4f+z
因为有一个潜在的关系: s=0.4h+0.6f+z,z为其他影响变量
那其实这个模型仍然是线性的,对于这个一个线性的模型,我们的模型仍然是可以学习到的。
比如:
我们可能会学习到这样的模型:
P=0.1w+0.6h+0.8f+s
这个模型其实和理想模型是等价的,是不是,其实 s h f 之间的相关性并没有影响我们求解出最好的模型。
但是这是在相关性比较简单的情况下可行,如果较为复杂,我们的模型也需要足够灵活,能够在模型中考虑到特征之间的相关性。
相关文章:
浅谈机器学习中的概率模型
浅谈机器学习中的概率模型 其实,当牵扯到概率的时候,一切问题都会变的及其复杂,比如我们监督学习任务中,对于一个分类任务,我们经常是在解决这样一个问题,比如对于一个n维的样本 X [ x 1 , x 2 , . . . .…...
MySQL 函数 索引 事务 管理
目录 一. 字符串相关的函数 二.数学相关函数 编辑 三.时间日期相关函数 date.sql 四.流程控制函数 centrol.sql 分页查询 使用分组函数和分组字句 group by 数据分组的总结 多表查询 自连接 子查询 subquery.sql 五.表的复制 六.合并查询 七.表的外连接 …...
Flink如何基于事件时间消费分区数比算子并行度大的kafka主题
背景 使用flink消费kafka的主题的情况我们经常遇到,通常我们都是不需要感知数据源算子的并行度和kafka主题的并行度之间的关系的,但是其实在kafka的主题分区数大于数据源算子的并行度时,是有一些注意事项的,本文就来讲解下这些注…...
总结:JavaEE的Servlet中HttpServletRequest请求对象调用各种API方法结果示例
总结:JavaEE的Servlet中HttpServletRequest请求对象调用各种API方法结果示例 一方法调用顺序是按照英文字母顺序从A-Z二该示例可以用作servlet中request的API参考,从而知道该如何获取哪些路径参数等等三Servlet的API版本5.0.0、JSP的API版本:…...
ChatGPT AIGC 完成Excel跨多表查找操作vlookup+indirect
VLOOKUP和INDIRECT的组合在Excel中用于跨表查询,其中VLOOKUP函数用于在另一张表中查找数据,INDIRECT函数则用于根据文本字符串引用不同的工作表。具体操作如下: 1.假设在工作表1中,A列有你要查找的值,B列是你希望查询的工作表名称。 2.在工作表1的C列输入以下公式:=VLO…...
Linux系统conda虚拟环境离线迁移移植
本人创建的conda虚拟环境名为yys(每个人的虚拟环境名不一样,替换下就行) 以下为迁移步骤: 1.安装打包工具将虚拟环境打包: conda install conda-pack conda pack -n yys -o yys.tar.gz 2.将yys.tar.gz上传到服务器&…...
Vue16 绑定css样式 style样式
绑定样式: 1. class样式写法:class"xxx" xxx可以是字符串、对象、数组。字符串写法适用于:类名不确定,要动态获取。对象写法适用于:要绑定多个样式,个数不确定,名字也不确定。数组写法适用于&…...
[Spring] SpringMVC 简介(三)
目录 九、SpringMVC 中的 AJAX 请求 1、简单示例 2、RequestBody(重点关注“赋值形式”) 3、ResponseBody(经常用) 4、为什么不用手动接收 JSON 字符串、转换 JSON 字符串 5、RestController 十、文件上传与下载 1、Respo…...
kettle应用-从数据库抽取数据到excel
本文介绍使用kettle从postgresql数据库中抽取数据到excel中。 首先,启动kettle 如果kettle部署在windows系统,双击运行spoon.bat或者在命令行运行spoon.bat 如果kettle部署在linux系统,需要执行如下命令启动 chmod x spoon.sh nohup ./sp…...
Git Commit Message规范
概述 Git commit message规范是一种良好的实践,可以帮助开发团队更好地理解和维护代码库的历史记录。它可以提高代码质量、可读性和可维护性。下面是一种常见的Git commit message规范,通常被称为"Conventional Commits"规范: 一…...
Linux网络编程系列之UDP广播
Linux网络编程系列 (够吃,管饱) 1、Linux网络编程系列之网络编程基础 2、Linux网络编程系列之TCP协议编程 3、Linux网络编程系列之UDP协议编程 4、Linux网络编程系列之UDP广播 5、Linux网络编程系列之UDP组播 6、Linux网络编程系列之服务器编…...
spring中事务相关面试题(自用)
1 什么是spring事务 Spring事务管理的实现原理是基于AOP(面向切面编程)和代理模式。Spring提供了两种主要的方式来管理事务:编程式事务管理和声明式事务管理。 声明式事务管理: Spring的声明式事务管理是通过使用注解或XML配置来…...
09 | JpaSpecificationExecutor 解决了哪些问题
QueryByExampleExecutor用法 QueryByExampleExecutor(QBE)是一种用户友好的查询技术,具有简单的接口,它允许动态查询创建,并且不需要编写包含字段名称的查询。 下面是一个 UML 图,你可以看到 QueryByExam…...
Linux命令(93)之su
linux命令之su 1.su介绍 linux命令su用于变更为其它使用者的身份,如root用户外,需要输入使用者的密码 2.su用法 su [参数] user su参数 参数说明-c <command>执行指定的命令,然后切换回原用户-切换到目标用户的环境变量 3.实例 3…...
1.HTML-HTML解决中文乱码问题
题记 下面是html文件解决中文乱码的方法 方法一 在 HTML 文件的 <head> 标签中添加 <meta charset"UTF-8">,确保文件以 UTF-8 编码保存 <head> <meta charset"UTF-8"> <!-- 其他标签和内容 --> </head> --…...
Vue3 + Nodejs 实战 ,文件上传项目--实现拖拽上传
目录 1.拖拽上传的剖析 input的file默认拖动 让其他的盒子成为拖拽对象 2.处理文件的上传 处理数据 上传文件的函数 兼顾点击事件 渲染已处理过的文件 测试效果 3.总结 博客主页:専心_前端,javascript,mysql-CSDN博客 系列专栏:vue3nodejs 实战-…...
Windows:VS Code IDE安装ESP-IDF【保姆级】
物联网开发学习笔记——目录索引 参考: VS Code官网:Visual Studio Code - Code Editing. Redefined 乐鑫官网:ESP-IDF 编程指南 - ESP32 VSCode ESP-ID Extension Install 一、前提条件 Visual Studio Code IDE安装ESP-IDF扩展…...
Hadoop3教程(十一):MapReduce的详细工作流程
文章目录 (94)MR工作流程Map阶段Reduce阶段 参考文献 (94)MR工作流程 本小节将展示一下整个MapReduce的全工作流程。 Map阶段 首先是Map阶段: 首先,我们有一个待处理文本文件的集合; 客户端…...
测试中Android与IOS分别关注的点
目录 1、自身不同点 2、测试注重点 3、其他测试点 主要从本身系统的不同点、系统造成的不同点、和注意的测试点做总结 1、自身不同点 研发商:Adroid是google公司做的手机系统,IOS是苹果公司做的手机系统 开源程度:Android是开源的&a…...
NLG(自然语言生成)评估指标介绍
诸神缄默不语-个人CSDN博文目录 本文介绍自然语言生成任务中的各种评估指标。 因为我是之前做文本摘要才接触到这一部分内容的,所以本文也是文本摘要中心。 持续更新。 文章目录 1. 常用术语2. ROUGE (Recall Oriented Understudy for Gisting Evaluation)1. 计算…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
