当前位置: 首页 > news >正文

faster lio 回环 加入GTSAM优化的记录

首先感谢这位博主的文章:https://blog.csdn.net/weixin_41281151/article/details/125371285,其中部分代码参考于改博主中的github: https://github.com/kahowang/FAST_LIO_SAM
不同的是,我使用的是faster lio进行更改,还有不少细节上的不同。

这份工作的目的

  1. 为了构建一个高精度的点云地图
  2. 去除动态物体,提高精度,所以选择以ivox进行搜寻最近点的faster lio

过程

  1. 这一步和上述博主的一样,首先引入关键帧的结构,引入gtsam进行优化,加入回环检测,矫正位姿和地图,然后做到效果差不多。

  2. but问题来了,(室内正常)在室外过程中,绕了一个周长近一公里的矩形,回到起点,发现此时位置在z轴上高了六七米,随后回环检测回环矫正,通过gtsam矫正发现,随着回环匹配帧插入的数量增加,也就插入五六个关键帧,此时的位置z轴才拉回0。(回环匹配没问题,在第一个回环匹配帧插入后,gtsam优化,z轴的高度为两三米)。but就算后面拉回去了,地图的精度反而下降了,看上去就感觉过优化。如下图所示。z=5到z=6这一段的精度就太差了,反而使得fast lio的精度优势下降了。
    在这里插入图片描述

  3. 于是我觉得需要降低优化,认为faster lio的框架下的直线行走精度够高,不需要gtsam优化,所以不将“大于设定距离而生成的关键帧A”插入优化,而仅仅插入“大于设定旋转角度而生成的关键帧B”插入优化,在触发回环再引入关键帧即可优化,然后对关键帧B间的关键帧A进行配准(如下图所示)。but结果显示因为gtsam含关键帧太少,反而回环优化后效果还是有点不对,矩形右边还是一样高。
    在这里插入图片描述

  4. 对2和3进行调参,分别对里程计的噪声、回环噪声、生成关键帧的条件等进行调节,所生成的地图(矩形下边)依然存在很大的问题。

结论:仅靠一个回环优化难以解决较大的累计误差,而累计误差过大,GTSAM回环优化反而会使地图质量下降。

相关文章:

faster lio 回环 加入GTSAM优化的记录

首先感谢这位博主的文章:https://blog.csdn.net/weixin_41281151/article/details/125371285,其中部分代码参考于改博主中的github: https://github.com/kahowang/FAST_LIO_SAM 不同的是,我使用的是faster lio进行更改&#xff0c…...

深入剖析 深度学习中 __init()__函数和forward()函数

目录 前言1. __init()__函数2. forward()函数3. 两者关系 前言 再看代码时,发现init函数和forward函数都有参数,具体是怎么传参的呢? 为了更方便的讲解,会举简单的代码例子结合讲解。 forward() 和 __init__() 是神经网络模型类…...

BUUCTF学习(一):SQL注入,万能密码

1、场景 2、题目 3、解题 用户名:admin or 11# 密码:123456 4、解析SQL注入 “SQL注入是一种常见的Web应用程序漏洞,攻击者可以通过注入的SQL语句获取数据库的敏感信息,对网站用户的数据安全造成威胁。SQL注入的特点包括广泛性、隐…...

基于springboot实现心灵治愈心理健康平台系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现心灵心理健康平台系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个心灵治愈交流平台 ,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构,面向对象编程思想进行项目开发。在引言中,作者将论…...

百度Apollo自动驾驶

百度从2013年开始布局自动驾驶领域,十年来一直坚持压强式的、马拉松式的研发投入,以技术创新驱动长期发展。百度Apollo L4级自动驾驶运营测试里程累计已超5000万公里,拥有自动驾驶专利族超4600件,其中高级别自动驾驶专利族数全球第…...

数据迁移库工具-C版-01-HappySunshineV1.0-(支持Gbase8a)

一、测试环境信息 名称值CPUIntel(R) Core(TM) i5-1035G1 CPU 1.00GHz操作系统CentOS Linux release 7.9.2009 (Core)内存3G逻辑核数2Gbase8a版本8.6.2-R43.34.27468a27HappySunshine版本V1.0 二、支持功能 序号功能1GBASE8a到GBASE8a的库级数据迁移。2批量加载。&#xff…...

【sv】 pack/unpack stream

https://www.amiq.com/consulting/2017/05/29/how-to-pack-data-using-systemverilog-streaming-operators/ https://www.amiq.com/consulting/2017/06/23/how-to-unpack-data-using-the-systemverilog-streaming-operators/...

二、使用DockerCompose部署RocketMQ

使用DockerCompose进行部署 docker-compose的版本为 Docker Compose version v2.2.3 RocketMQ的部署方式以及各自的特点 单master模式 只有一个 master 节点,如果master节点挂掉了,会导致整个服务不可用,线上不宜使用,适合个人学习…...

论文笔记[156]PARAFAC. tutorial and applications

原文下载:https://www.sciencedirect.com/science/article/abs/pii/S0169743997000324 摘要 本文介绍了PARAFAC的多维分解方法及其在化学计量学中的应用。PARAFAC是PCA对高阶数组的推广,但该方法的一些特性与普通的二维情况截然不同。例如,…...

AKKA.Net 的使用 来自CHATGPT

请用C# 语言实现一个自动化设备 流水线调度模型,流水线各个环节需要并行执行: 下面是一个使用C#语言实现自动化设备流水线调度模型的简单示例。该示例使用并发编程库System.Threading.Tasks来实现流水线各个环节的并行执行。 csharp using System; usi…...

网络安全—小白学习笔记

1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟入…...

OpenRemote: Java 开源 IoT 物联网开发平台,匹配智慧城市、智能家居、能源管理

OpenRemote 是一个直观、用户友好的基于Java语言的开源 IoT 物联网设备管理平台,它包括从连接设备到构建应用程序和特定领域的智能应用程序的所有功能和特性。通过OpenRemote物联网平台,用户可以收集和处理来自不同设备的传感器数据,适用于智…...

GO-unioffice实现word编辑

导包 import ("fmt""log""os""time""github.com/unidoc/unioffice/common/license""github.com/unidoc/unioffice/document" ) 创建word文件 func CreateFile(name string) {filename : name ".docx&quo…...

SpringMVC的拦截器(Interceptor)

拦截器简介 SpringMVC的拦截器Interceptor,主要是对Controller资源访问时进行拦截的基本操作的技术,当然拦截后可以进行权限控制,功能增强等都是可以的。拦截器类似于JavaWeb开发中的Filter,他们之间的区别如下图所示 Filter技术…...

【git】gitlab常用命令

gitlab官网 官网:官网 中文官网:中文官网 默认的gitlab安装目录 /opt/gitlab/bin 启动 gitlab-ctl start 查看状态 gitlab-ctl status 停止 gitlab-ctl stop 重启GitLab gitlab-ctl restart 查看gitlab的配置文件 配置的路径是:/…...

解读下SWD协议以及其应用

SWD协议原理 SWD(Serial Wire Debug)协议是一种用于ARM Cortex微控制器的调试接口协议。它定义了主机计算机与目标设备之间通过SWD线进行通信的格式和规范。 SWD协议使用两根线进行通信:SWDIO(Serial Wire Debug I/O&#xff09…...

基于单目的光流法测速

目录 1.简介 2.代码实现 1.简介 基于单目的光流法是一种常见的计算机视觉技术,用于估计图像序列中物体的运动速度。它通过分析连续帧之间的像素变化来推断物体在图像中的移动情况。 背景: 光流法是计算机视觉领域中最早的运动估计方法之一&#xff0c…...

排序-算法

文章目录 一、排序的概念及引用1.1 排序概念1.2 排序运用1.3 常见排序算法 二、常见排序算法的实现2.1 插入排序2.1.1 基本思想2.1.2 直接插入排序2.1.3 希尔排序 2.2 选择排序2.2.1 基本思想2.2.2 直接选择排序2.2.3 堆排序 2.3 交换排序2.3.1 冒泡排序2.3.2 快速排序2.3.3 快…...

【特纳斯电子】基于单片机的火灾监测报警系统-实物设计

视频及资料链接:基于单片机的火灾监测报警系统-实物设计 - 电子校园网 (mcude.com) 编号: T0152203M-SW 设计简介: 本设计是基于单片机的火灾监测报警系统,主要实现以下功能: 1.通过OLED显示温度、烟雾、是否有火…...

网络安全就业形势怎么样?

泻药,以下都是我本人的肺腑之言,是答主深耕职场多年,转战数家公司总结周围朋友的从业经验才总结出来的行业真相,真心希望帮助到还没有步入职场的大家,尤其是24届的应届毕业生,多掌握些就业信息就能少走一些…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

LLMs 系列实操科普(1)

写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...