GEE 18:基于GEE平台的土地荒漠化监测与分析【论文复现】
Desertification
- 1. 研究背景
- 1.1 参考论文
- 1.2 参数获取
- 1.2.1 NDVI
- 1.2.2 Albedo
- 1.2.3 Normalizing indices
- 1.2.4 Calculating the quantitative relationship
- 1.2.5 Calculating DDI
- 2. GEE
- 2.1 数据
- 2.2 GEE code
- 2.2.1 Study region
- 2.2.2 Reomove cloud for Landsat-8
- 2.2.3 Calculate NDVI and Albedo
- 2.2.4 Normalization
- 2.2.5 Obtain random sampling points
- 2.2.6 Construct a linear regression model
- 2.2.7 Recalculate NDVI and Albedo
- 2.2.8 Calculating DDI
- 3. Reference
1. 研究背景
土地荒漠化是指包括气候变异和人类活动在内的种种因素造成的干旱半干旱和亚湿润干地区的土地退化。及时准确地掌握土地荒漠化发生发展情况是有效防止和治理土地荒漠化的基本前提。目前遥感技术在土地荒漠化监测中起到了不可替代的作用。使用遥感影像数据可以提取土地荒漠化信息,通过遥感影像所表现的不同信息,可以判断土地荒漠化的发生与否以及发展程度等。在进行土地荒漠化信息提取时,常用的方法有人工目视解译方法、监督分类方法、非监督分类方法、决策树分层分类方法、神经网络自动提取方法等。在实际应用中,通常选择其中的一种或结合几种方法进行分类提取。
目前,一种比较新的方法是通过构造“植被指数(NDVI)——反照率(Albedo)特征空间”来进行荒漠化信息遥感提取。荒漠化过程及其地表特性的变化能在 Albedo-NDVI特征空间中得到明显直观的反映。在Albedo-NDVI特征空间中,可以利用植被指数和地表反照率的组合信息,通过选择反映荒漠化程度的合理指数,就可以将不同荒漠化土地有效地加以区分,从而实现荒漠化时空分布与动态变化的定量监测与研究。而这个问题的合理解决,实际上就是如何根据需要采用一定的综合指标来划分Albedo-NDVI特征空间。
目前,关于荒漠化的数据较少,且不同研究论文所得结论不一,因此,有必要结合GEE,探究土地荒漠化的进展。在这里我们就随便选择一个研究区即可。
1.1 参考论文


1.2 参数获取
在GEE 云平台中,运用云掩膜函数对遥感影像中被云及云阴影覆盖的区域进行掩膜处理。再根据公式NDVI公式,计算研究区NDVI值,接下来建立的反照率反演模型,对研究区的Albedo进行反演。然后对归一化后的NDVI与Albedo进行线性回归分析确定斜率值(a),最终建立DDI反演模型。

1.2.1 NDVI

1.2.2 Albedo

1.2.3 Normalizing indices

1.2.4 Calculating the quantitative relationship

1.2.5 Calculating DDI

2. GEE
2.1 数据
USGS Landsat 8 Level 2, Collection 2, Tier 1


2.2 GEE code
2.2.1 Study region
var table = ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019").filter(ee.Filter.eq('provinces','ningxia'));var roi = table.geometry();
Map.addLayer(roi, {'color':'blue'}, 'StudyArea');
Map.centerObject(roi, 7);
2.2.2 Reomove cloud for Landsat-8
/****************************************************************** process satellite image
*****************************************************************/
// reomove cloud for Landsat-8
function rmL8Cloud(image) { var cloudShadowBitMask = (1 << 4); var cloudsBitMask = (1 << 3); var qa = image.select('QA_PIXEL'); var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) .and(qa.bitwiseAnd(cloudsBitMask).eq(0)); return image.updateMask(mask).copyProperties(image).copyProperties(image, ["system:time_start"]);
} // Applies scaling factors.
function applyScaleFactors(image) {var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);return image.addBands(opticalBands, null, true).addBands(thermalBands, null, true);
}// calculate Albedo
function Albedo_landsat(image){var alb = image.expression("(0.356*blue)+(0.130*red)+(0.373*nir)+(0.085*swir)+(0.072*swir2)- 0.0018", //0.0018 VS 0.018{'red': image.select('SR_B4'),'blue': image.select('SR_B2'),'nir': image.select('SR_B5'),'swir': image.select('SR_B6'),'swir2': image.select('SR_B7')});return image<相关文章:
GEE 18:基于GEE平台的土地荒漠化监测与分析【论文复现】
Desertification 1. 研究背景1.1 参考论文1.2 参数获取1.2.1 NDVI1.2.2 Albedo1.2.3 Normalizing indices1.2.4 Calculating the quantitative relationship1.2.5 Calculating DDI2. GEE2.1 数据2.2 GEE code2.2.1 Study region2.2.2 Reomove cloud for Landsat-82.2.3 Calcula…...
平台系统老板驾驶舱的重要性,我选云表
平台系统老板驾驶舱的重要性在于它是一个集成的管理和分析工具,能够提供对平台系统运行情况的全面和实时的监控、分析和管理功能。以下是平台系统老板驾驶舱的重要性: 老板驾驶舱 该表单可供老板实时把控企业运营情况,包括销售业绩、…...
【SpringMVC篇】探索请求映射路径,Get请求与Post请求
🎊专栏【SpringMVC】 🍔喜欢的诗句:天行健,君子以自强不息。 🎆音乐分享【如愿】 🎄欢迎并且感谢大家指出小吉的问题🥰 文章目录 🌺请求映射路径⭐报错原因⭐解决方法 🌺…...
vqvae简单实战,利用vqvae来提升模型向量表达
最近CV领域各种大模型在图像生成领域大发异彩,比如这两年大火的dalle系列模型。在这些模型中用到一个基础模型vqvae,今天我们写个简单实现来了解一下vqvae的工作原理。vqvae原始论文连接https://arxiv.org/pdf/1711.00937.pdf 1,代码 首先我们…...
idea禁用双击ctrl
Run anything | IntelliJ IDEA Documentation Disable double modifier key shortcuts...
记使用docker部署项目出现问题
我的docker-compose.yml内容如下: version: "3" services:my_server:build: .restart: alwaysdepends_on:mysql:condition: service_startedports:- 9999:9999links:- mysqlmysql:image: mysql:latest # mysql:oraclerestart: alwayscontainer_name: mys…...
EDU挖掘
1.信息搜集2.漏洞挖掘 1.信息搜集 没事干,准备找个证书站挖挖看,没想到碰到一个小通用系统。 看样子还挺多功能可以测, 这里利用F12 查看前端源码js 或者css文件,直接用hunter或者fofa搜索到同一类型的网站。 Hunter语法&#…...
机器人制作开源方案 | 杠杆式6轮爬楼机器人
1. 功能描述 本文示例将实现R281b样机杠杆式6轮爬楼机器人爬楼梯的功能(注意:演示视频中为了增加轮胎的抓地力,在轮胎上贴了双面胶,请大家留意)。 2. 结构说明 杠杆式6轮爬楼机器人是一种专门用于爬升楼梯或不平坦地面…...
报错——warning: ignoring JAVA_HOME=/home/jdk/jdk1.8.0_281; using bundled JDK
我使用了es的8.3.0版本,但es从7.17版本以后不再支持jdk1.8了,需要进行JDK的版本升级,或者降低es的版本。 es和jdk对比版本...
【Java8】java.time 根据日期获取年初年末、月初月末、日初日末
目录 年初年末月初月末3. 日初日末 记录日常开发中的常用的日期转换代码,算是一篇Java 8时间API使用实操的简短总结文。 下文中,都以LocalDateTime为例,在不声明的情况下如下方法一般都适用于Java8中LocalDate、LocalDateTime、OffsetDateTi…...
【LeetCode: 137. 只出现一次的数字 II | 位运算 | 哈希表】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
「深入探究Web页面生命周期:DOMContentLoaded、load、beforeunload和unload事件」
🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 引言 1. DOMContentLoaded 1.1 属性 1.2 A…...
SpringMVC源码分析(一)启动流程分析
a、SpringMVC 在启动过程中主要做了什么事情? SpringMVC在启动过程中是什么时候解析web.xml文件的,又是什么时候初始化9大内置对象的? <?xml version"1.0" encoding"UTF-8"?> <web-app xmlns"http://xml…...
ARM 10.12
设置按键中断,按键1按下,LED亮,再按一次,灭 按键2按下,蜂鸣器响。再按一次,不响 按键3按下,风扇转,再按一次,风扇停 src/key.c #include"key.h"//按键3的配…...
vue-rouer 路由
安装/配置: //进入项目目录:(在搭建项目的时候安装了) cnpm install vue-router --save旧版路由 需要自己配置 //项目中载入,一般在main.js中载入:import VueRouter from vue-routerVue.use(VueRouter)let router new VueRouter({}) //其中配置路径和地址//在Vue中引入:n…...
元数据的前世今生
什么是元数据 元数据(Metadata)是描述数据的数据。它是一组信息,用于描述数据的特征、属性、结构和内容,以便更好地管理、理解、组织和使用数据。让人们能够清楚拥有什么数据、代表什么、源自何处、如何在系统中移动,以及哪些人可以使用源数据,如何使用。 元数据通常包…...
Python实现简易过滤删除数字的方法
嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 如果想从一个含有数字,汉字,字母的列表中滤除仅含有数字的字符, 当然可以采取正则表达式来完成,但是有点太麻烦了…...
软件测试定位bug方法+定位案例(详解)
1、问题bug定位技巧 首先,作为开发也好,测试也好,定位问题有一个总的思路,而这个思路是和数据的走向一致的。 大致是这样: 用户层面问题 -> Web页面/软件界面 -> 中间件 -> 后端服务 -> 代码 -> 数据…...
【算法练习Day21】组合剪枝
📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:练题 🎯长路漫漫浩浩,万事皆有期待 文章目录 组合剪枝总结: …...
NPM相关命令
临时使用 npm --registry https://registry.npm.taobao.org install 包名2.永久设置为淘宝镜像 npm config set registry https://registry.npm.taobao.org3.换回国外官方源 npm config set registry https://registry.npmjs.org4.查看使用的源地址 npm config get registr…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...
