【CFD小工坊】浅水模型的边界条件
【CFD小工坊】浅水模型的边界条件
- 前言
- 处理边界条件的原则
- 边界处水力要素的计算
- 水位边界条件
- 单宽流量边界条件
- 流量边界条件
- 固壁边界条件
- 参考文献
前言
在浅水方程的离散及求解方法一篇中,我们学习了三角形网格各边通量值及源项的求解。但仍有一个问题没有解决:对于边界处的网格,模型边界对应的网格边的通量求解。
对此,我们借鉴王志力1的研究,学习各类边界条件下,网格边的通量的求解。
处理边界条件的原则
对于浅水水域,常见的边界有水位边界与流量边界。在此,我们假设网格 i i i的第 j j j条边对应了模型的边界,设边界上的水位为 h i j ∗ h_{ij}^* hij∗,垂直(外法线方向)和平行网格边的流速为 u ~ i j ∗ \tilde{u}_{ij}^* u~ij∗和 v ~ i j ∗ \tilde{v}_{ij}^* v~ij∗。为简便起见,以下我们将 h i j ∗ h_{ij}^* hij∗简记为 h ∗ h^* h∗,将 u ~ i j ∗ \tilde{u}_{ij}^* u~ij∗和 v ~ i j ∗ \tilde{v}_{ij}^* v~ij∗简记为 u ~ L ∗ \tilde{u}_L^* u~L∗和 v ~ L ∗ \tilde{v}_L^* v~L∗
根据一维方程的特征线理论,沿着特征线方向有特征不变量,最终会得到如下关系:
u ~ L ∗ + 2 c L = u ∗ + 2 c ∗ \tilde{u}_L^*+2c_L = u^* + 2c^* u~L∗+2cL=u∗+2c∗
上式即确定边界条件时所要满足的原则。其中, c L = g h L c_L=\sqrt{gh_L} cL=ghL, c ∗ = g h ∗ c^*=\sqrt{gh^*} c∗=gh∗。

边界处水力要素的计算
在模型中,边界处的水力要素的计算步骤如下:
- 根据笛卡尔坐标系下边界处的 u L u_L uL和 v L v_L vL转化为网格边界外法线方向和切向的 u ~ L ∗ \tilde{u}_L^* u~L∗和 v ~ L ∗ \tilde{v}_L^* v~L∗。
- 给定边界处的 u ∗ u^* u∗或 h ∗ h^* h∗。此处的 u ∗ u^* u∗值可通过流量边界条件转化而来。
- 根据式 u ~ L ∗ + 2 c L = u ∗ + 2 c ∗ \tilde{u}_L^*+2c_L = u^* + 2c^* u~L∗+2cL=u∗+2c∗来确定网格边上的其它变量。例如,对于水位条件, h ∗ h^* h∗已知,我们需要通过上式确定 u ∗ u^* u∗。
- 根据浅水方程的对流项确定通量值。
水位边界条件
对于边界条件, h ∗ h^* h∗已知,则:
u ∗ = u ~ L ∗ + 2 c L − 2 c ∗ = u ~ L ∗ + 2 g h L − 2 g h ∗ u^* = \tilde{u}_L^*+2c_L - 2c^*=\tilde{u}_L^*+ 2\sqrt{gh_L} -2\sqrt{gh^*} u∗=u~L∗+2cL−2c∗=u~L∗+2ghL−2gh∗
之后将局部坐标系的 u ∗ u^* u∗和 v ∗ v^* v∗转化为全局笛卡尔坐标系下的 u b u_b ub和 v b v_b vb;记 h b = h ∗ h_b=h^* hb=h∗。则边界处的通量为:
( F n ) b = E ( U b ) n x + G ( U b ) n y = n x ( h u b h u b 2 + g h b 2 2 h u b v b ) + n y ( h v b z h u b v b h v b 2 + g h b 2 2 ) (\bold{F}_n)_b = \bold{E(U_b)} n_x+ \bold{G(U_b)} n_y = n_x \left( \begin{matrix} hu_b \\ hu_b^2+\dfrac{gh_b^2}{2} \\ hu_b v_b \end{matrix} \right) + n_y \left( \begin{matrix} hv_bz \\ hu_b v_b \\ hv_b^2+\dfrac{gh_b^2}{2} \end{matrix} \right) (Fn)b=E(Ub)nx+G(Ub)ny=nx hubhub2+2ghb2hubvb +ny hvbzhubvbhvb2+2ghb2
式中, ( n x , n y ) (n_x, n_y) (nx,ny)表示边界处外法线方向。
单宽流量边界条件
给定网格边的单宽流量 q = h ∗ u ∗ q=h^*u^* q=h∗u∗,则有:
u ~ L ∗ + 2 c L = u ∗ + 2 c ∗ = q h ∗ + 2 g h ∗ = q c ∗ 2 / g + 2 g h ∗ \tilde{u}_L^*+2c_L = u^* + 2c^* = \dfrac{q}{h^*} + 2\sqrt{gh^*} = \dfrac{q}{{c^*}^2/g} + 2\sqrt{gh^*} u~L∗+2cL=u∗+2c∗=h∗q+2gh∗=c∗2/gq+2gh∗
化简后,上述方程为 c ∗ c^* c∗的一元三次方程:
2 c ∗ 3 − ( u L + 2 g h L ) c ∗ 2 − g q = 0 2{c^*}^3 - (u_L + 2\sqrt{gh_L}){c^*}^2 - gq = 0 2c∗3−(uL+2ghL)c∗2−gq=0
求解后可得 h ∗ = c ∗ 2 / g h^*={c^*}^2/g h∗=c∗2/g。同理,我们可求得 h b h_b hb、 u b u_b ub和 v b v_b vb,以及通量 ( F n ) b (\bold{F}_n)_b (Fn)b。
注意:在设置边界时,我们需要设定单宽流量的方向;对于入流边界,单宽流量方向与边界外法线方向相反,则 q < 0 q<0 q<0;反之,对于出流边界, q > 0 q>0 q>0。
流量边界条件
若流量给定在一个网格的边上,我们可以先求该边界的单宽流量 q q q,之后按照上一小节等同的办法处理边界。若指定的边界条件涉及到m条连续的网格边(如下图边界蓝色边所示),组需要先求出每个对应网格边的单宽流量,之后再按单宽流量边界条件处理方法进行计算。

对于这m条边界上的总流量 Q Q Q,某一网格 i i i边上的单宽流量 q i q_i qi是:
q i = L i ′ h i 1.5 C i ∑ k = 1 m L k ′ h k 1.5 C k Q q_i = \dfrac{L'_i h_i^{1.5}C_i}{\sum^{m}_{k=1} L'_k h_k^{1.5}C_k} Q qi=∑k=1mLk′hk1.5CkLi′hi1.5CiQ
式中, L ′ L' L′表示流量边界对应网格边的边长, h h h表示对应网格的水深, C C C表示对应网格的摩阻力项,有 C = h 1 / 6 n C = \dfrac{h^{1/6}}{n} C=nh1/6,n为曼宁系数。
之后根据求出的单款流量,依次处理每个边界网格的通量值。
固壁边界条件
在静止的固壁边界上,我们采用无滑移边界条件,即 u b u_b ub和 v b v_b vb均为0,故:
( F n ) b = ( 0 g h L 2 2 n x g h L 2 2 n y ) (\bold{F}_n)_b = \left( \begin{matrix} 0 \\ \dfrac{gh_L^2}{2}n_x \\ \dfrac{gh_L^2}{2}n_y \end{matrix} \right) (Fn)b= 02ghL2nx2ghL2ny
参考文献
王志力. 基于Godunov和Semi-Lagrangian法的二、三维浅水方程的非结构化网格离散研究[D]. 辽宁:大连理工大学,2005. ↩︎
相关文章:
【CFD小工坊】浅水模型的边界条件
【CFD小工坊】浅水模型的边界条件 前言处理边界条件的原则边界处水力要素的计算水位边界条件单宽流量边界条件流量边界条件固壁边界条件 参考文献 前言 在浅水方程的离散及求解方法一篇中,我们学习了三角形网格各边通量值及源项的求解。但仍有一个问题没有解决&…...
电力物联网关智能通讯管理机-安科瑞黄安南
众所周知,网关应用于各种行业的终端设备的数据采集与数据分析,然后去实现设备的监测、控制、计算,为系统与设备之间建立通讯联系,达到双向的数据通讯。 网关可以实时监测并及时发现异常数据,同时自身根据用户规则进行…...
用Flask构建一个AI翻译服务
缘起 首先,看一段代码,只有几行Python语句却完成了AI翻译的功能。 #!/usr/bin/python3import sys from transformers import MarianMTModel, MarianTokenizerdef translate(word_list):model_name "Helsinki-NLP/opus-mt-en-zh"tokenizer …...
微信小程序引入阿里巴巴iconfont图标并使用
介绍 在小程序里,使用阿里巴巴的图标,如下所示: 使用方式 搜索自己需要的图标,然后将需要用到的图标加入购物车,如下图所示: 去右上角,点击购物车按钮;这里第一次使用,会有三个提…...
mysql面试题49:MySQL中不同text数据类型的最大长度
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:MySQL中TEXT数据类型的最大长度 在MySQL中,TEXT数据类型用于存储较大…...
从虚拟电厂在上海的实践探索看企业微电网数字化的意义
安科瑞 华楠 作为典型的人口聚集、负荷密集区域,上海市具有外来电比例高、本地资源禀赋不足的特点。从发电侧角度来看,近年来上海风、光等新能源发电装机比例逐年提升,传统的火电逐渐成为调节性发电资源;从负荷侧角度来看上海以第…...
创建并初始化线程池
创建并初始化线程池–》threadpool.h, 创建并初始化&脱离(执行完后)子线程,每个子线程信号量wait阻塞【1】 创建套接字:int listenfd socket( PF_INET, SOCK_STREAM, 0 ); 端口复用:setsockopt( listenfd, SOL_SOCKET, SO_REUSEADDR, &a…...
【LeetCode热题100】--136.只出现一次的数字
136.只出现一次的数字 使用哈希表: class Solution {public int singleNumber(int[] nums) {Map<Integer,Integer> map new HashMap<>();for(int num:nums){Integer count map.get(num);if(count null){count 1;}else{count;}map.put(num,count);}…...
Java idea查看自定义注解的调用地方
Java idea查看自定义注解的调用地方...
ReLU激活函数
LeakyReLU激活函数的具体用法请查看此篇博客:LeakyReLU激活函数 ReLU(Rectified Linear Unit)激活函数是深度学习中最常用的激活函数之一,它的数学表达式如下: 在这里,(x) 是输入,(f(x)) 是输…...
【Android】adjustViewBounds 的理解和使用
理解 adjustViewBounds 是一个 ImageView 的属性,用于调整 ImageView 的边界以适应图像的尺寸。当设置为 true 时,ImageView 的边界将根据图像的宽高比例进行调整,以确保图像完全显示在 ImageView 内部。 理解和使用 adjustViewBounds 的步…...
Redis知识补充
大key删除 unLink scan分批删除 渐进式rehash Redis笔记:Redis的字典什么时候进行Rehash?_redis什么时候进行rehash-CSDN博客...
IIS 部署.NetCore,最细步骤
服务器安装环境 将.net core程序部署到IIS总体需要经过以下3个大步骤,其中在IIS上配置网站有些比较繁琐,我都会逐一给出详细步骤。 <1>安装IIS和.NetCORE运行时程序 <2>以文件的形式发布.NETCORE程序到指定目录 <3>IIS上面建立网站…...
4.查询用户的累计消费金额及VIP等级
思路分析: (1)按照user_id及create_date 分组求消费金额total_amount (2)开窗计算同user_id下的累计销售金额sum(total_amount) over(partition by user_id order by create_date ROWS BETWEEN UNBOUNDED PRECEDING AN…...
解决MySQL错误-this is incompatible with sql_mode=only_full_group_by
报错 Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column ‘数据库名.表名.字段名’ which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_modeonly_full_group_by 原因 MySQL错误-t…...
UDP通信-广播、组播
UDP的三种通信方式 单播:单台主机与单台主机之间的通信。 广播:当前主机与所在网络中的所有主机通信。 组播:当前主机与选定的一组主机的通信。 UDP如何实现广播 使用广播地址:255.255.255.255 具体操作: 发送端…...
10-bean创建流程1一finishBeanFactoryInitialization(ConfigurableListableBeanFactory
文章目录 1. 方法的主要流程2. ConversionService-如何自定义转换器3. AbstractBeanFactory#getMergedLocalBeanDefinition(String beanName)4.FactoryBean实例化5.内置值处理器1. 方法的主要流程 /*** Finish the initialization of this contexts bean factory,* initializi…...
专题三:穷举、暴搜、深搜、回溯、剪枝【递归、搜索、回溯】
1、全排列 class Solution { public:vector<vector<int>> ret;vector<int> path;bool check[7];void dfs(vector<int>& nums){if(nums.size() path.size()) {ret.push_back(path);return;}for(int i 0;i < nums.size();i){if(check[i] fals…...
国科云SSL证书讲堂:SSL证书安装常见问题盘点
SSL证书能够对网站传输数据进行加密处理,有效提升网站的数据安全防护能力,逐渐被越来越多的政企网站所应用。但在安装使用SSL证书时,经常会发生各种意想不到的问题,对网站的数据安全和正常访问造成严重影响。本文国科云对安装使用…...
Python3无法调用Sqlalchemy解决(mysqldb)
原因 在安装Sqlalchemy后运行程序报错 无法导入mysqldb,缺失模块 ImportError: No module named ‘MySQLdb’ 既然缺少 MySQLdb 这个模块,尝试按照正常的想法执行 pip install MySQLdbpip install mysql-python 应该能解决,但是却找不到…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
