当前位置: 首页 > news >正文

Leetcode 2902. Count of Sub-Multisets With Bounded Sum

  • Leetcode 2902. Count of Sub-Multisets With Bounded Sum
    • 1. 解题思路
    • 2. 代码实现
    • 3. 算法优化
  • 题目链接:2902. Count of Sub-Multisets With Bounded Sum

1. 解题思路

这一题有点惭愧,因为没有搞定,遇上了超时问题……

我的思路其实还是挺直接的,就是直接使用动态规划,首先将元素按照unique number进行分组,然后分别考察其取用各个数目的情况下的可能情况。

由此,基本我们就转换成一个元素取用的动态规划问题,剩下的我们就只需要进行剪枝优化即可。

2. 代码实现

给出python代码实现如下:

class Solution:def countSubMultisets(self, nums: List[int], l: int, r: int) -> int:MOD = 10**9+7cnt = Counter(nums)nums = sorted(cnt.items(), reverse=True)n = len(nums)accums = [0 for _ in range(n+1)]for i in range(n-1, -1, -1):accums[i] = accums[i+1] + nums[i][0] * nums[i][1]@lru_cache(None)def dp(idx, prev):if idx >= n:return 1 if l <= prev <= r else 0if prev > r:return 0if prev + accums[idx] < l:return 0num, m = nums[idx]return sum(dp(idx+1, prev + i*num) for i in range(m+1)) % MODreturn dp(0, 0)

不过很不幸的是,上述算法一直遇到超时问题,最后也没有优化掉这个问题……

3. 算法优化

看了一下大佬们的解答,整体依然还是动态规划的思路,而且也是需要先将数据按照unique number进行分组。

不过,大佬们的解法是直接按照所有的值进行动态规划,考察得到某个具体的值的情况下可能的选择方法。

给出大佬们的python代码实现如下:

class Solution:def countSubMultisets(self, nums: List[int], l: int, r: int) -> int:MOD = 10**9+7cnt = Counter(nums)dup = cnt[0] + 1nums = [(k, v) for k, v in cnt.items() if k != 0]dp = [0 for _ in range(r+1)]dp[0] = 1for num, k in nums:dp_acc = [0] * (num + r + 1)for i in range(r + 1):dp_acc[num+i] = dp_acc[i] + dp[i]new_dp = [0 for _ in range(r+1)]for i in range(r, -1, -1):new_dp[i] = (dp_acc[i + num] - dp_acc[max(0, i - k * num)]) % MODdp = new_dpreturn (sum(dp[l:]) * dup) % MOD

提交代码评测得到:耗时4445ms,占用内存20.4MB。

相关文章:

Leetcode 2902. Count of Sub-Multisets With Bounded Sum

Leetcode 2902. Count of Sub-Multisets With Bounded Sum 1. 解题思路2. 代码实现3. 算法优化 题目链接&#xff1a;2902. Count of Sub-Multisets With Bounded Sum 1. 解题思路 这一题有点惭愧&#xff0c;因为没有搞定&#xff0c;遇上了超时问题…… 我的思路其实还是…...

ARP协议(地址解析协议) 的作用和操作过程

目录 1.问题: &#xff08;在同一个LAN局域网内&#xff09;如何在已知目的接口的IP地址前提下确定其MAC地址&#xff1f;2.问题&#xff1a;现在假设主机A要向目的主机B发送一个数据报&#xff0c;怎么发送呢&#xff1f;2.1在一个局域网内时2.1.1情况一&#xff1a;2.1.2情况…...

轻游戏风格虚拟资源付费下载模板Discuz论坛模板

轻游戏风格虚拟资源付费下载模板Discuz论坛模板&#xff0c;游戏资讯付费VIP源码模板。 模板说明&#xff1a; 1、模板名称&#xff1a;"qing游戏风格"&#xff0c;版本支持&#xff1a;discuzx3.0版本&#xff0c;discuzx3.1版本&#xff0c;discuzx3.2版本&#…...

MongoDB索引操作

1、创建索引 语句&#xff1a; db.collection.createIndex(keys, options, commitQuorum) 选项参数名类型描述keys 包含排序字段和排序方式的对象&#xff0c; 值&#xff1a; 1为升序索引 -1为降序索引 options参数控制对象backgroundboolean 可选&#xff0…...

AMEYA360:君正低功耗AIoT图像识别处理器—X1600/X1600E

• 高性能 XBurst 1 CPU&#xff0c;主频1.0GHz • 超低功耗 • 内置LPDDR2(X1600&#xff1a;32MB&#xff0c;X1600E&#xff1a;64MB) • 实时控制核XBurst 0&#xff0c;面向安全管理和实时控制 • 丰富的外设接口 应用领域 • 基于二维码的智能商业 • 智能物联网 • 高端…...

EM@圆和圆锥曲线的参数方程

文章目录 abstract圆的参数方程匀速圆周运动的轨迹从普通方程直接转化为参数方程 任意位置圆心的方程参数方程一般方程例 交点问题的参数方程法 圆锥曲线的参数方程椭圆参数方程例椭圆内接矩形的最大面积问题 抛物线参数方程一般位置的抛物线例 双曲线的参数方程点到双曲线的最…...

uniapp 微信小程序 vue3.0+TS手写自定义封装步骤条(setup)

uniapp手写自定义步骤条&#xff08;setup&#xff09; 话不多说 先上效果图&#xff1a; setup.vue组件代码&#xff1a; <template><view class"stepBox"><viewclass"stepitem"v-for"(item, index) in stepList":key"i…...

Python 金融大数据分析

第一章 为什么将python用于金融 python编程语言 python是一种高级的多用途编程语言&#xff0c;广泛用于各种非技术和技术领域。 python是一种具备动态语义、面向对象的解释型高级编程语言。它的高级内建数据结构与动态类型及动态绑定相结合&#xff0c;使其在快速应用开发上…...

初识C++入门(1)

为什么会衍生出C&#xff1f; C语言是结构化和模块化的语言&#xff0c;适合处理较小规模的程序。对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要高度的抽象和建模时&#xff0c;C语言则不合适。为了解决软件危机&#xff0c;20世纪80年代&#xff0c;计算机界提出…...

使用Selenium的WebDriver进行长截图

from selenium import webdriver from PIL import Image from io import BytesIO # 创建浏览器驱动 driver webdriver.Chrome()# 打开网页 driver.get("https://www.douban.com/") # 替换为您要截图的网页URL def get_long_shot(driver,table_element):# 获取页面的…...

python+大数据校园卡数据分析 计算机竞赛

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于yolov5的深度学习车牌识别系统实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;4分工作量&#xff1a;4分创新点&#xff1a;3分 该项目较为新颖&am…...

【机器学习】sklearn降维算法PCA

文章目录 降维PCAsklearn中的PCA代码实践 PCA对手写数字数据集的降维 降维 如何实现降维&#xff1f;【即减少特征的数量&#xff0c;又保留大部分有效信息】 将那些带有重复信息的特征合并&#xff0c;并删除那些带无效信息的特征等等&#xff0c;逐渐创造出能够代表原特征矩…...

华为云云耀云服务器L实例评测|企业项目最佳实践之评测用例(五)

华为云云耀云服务器L实例评测&#xff5c;企业项目最佳实践系列&#xff1a; 华为云云耀云服务器L实例评测&#xff5c;企业项目最佳实践之云服务器介绍(一) 华为云云耀云服务器L实例评测&#xff5c;企业项目最佳实践之华为云介绍(二) 华为云云耀云服务器L实例评测&#xff5…...

Xcode升级到15.0 解决DT_TOOLCHAIN_DIR问题

根据个人开发遇到的问题做的总结&#xff0c;公司要求Xcode 14.2 &#xff0c;Swift 5.7开发&#xff0c;由于升级了Mac 14.0系统后&#xff0c;Xcode 14.2不能使用&#xff0c;解决方案目前有2个 一、在原来Xcode 14.2 的显示包内容&#xff0c;如图 二、升级到Xcode的15.0后…...

小谈设计模式(29)—访问者模式

小谈设计模式&#xff08;29&#xff09;—访问者模式 专栏介绍专栏地址专栏介绍 访问者模式角色分析访问者被访问者 优缺点分析优点将数据结构与算法分离增加新的操作很容易增加新的数据结构很困难4 缺点增加新的数据结构比较困难增加新的操作会导致访问者类的数量增加34 总结…...

【25】c++设计模式——>责任链模式

责任链模式定义 C中的责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为型设计模式&#xff0c;它通过将请求沿着处理对象的链传递来避免把请求发送者与接收者耦合在一起。 责任链模式的主要思想是&#xff0c;通过将多个处理对象组成一条链&…...

GlobalTransactional

seata-spring的maven坐标&#xff1a; <dependency><groupId>io.seata</groupId><artifactId>seata-spring</artifactId><version>1.6.1</version> </dependency>GlobalTransactional注解的位置&#xff1a; io.seata.sprin…...

Android Studio运行kotlin项目,一直Read timed out

Android Studio运行kotlin项目&#xff0c;一直Read timed out 下载别人的Kotlin项目&#xff0c;导入as后&#xff0c;运行app一直失败&#xff0c;提示Read timed out&#xff0c;有2种解决办法 第一种方式&#xff1a;gradle.properties 修改kotlin项目种的gradle.proper…...

Excel 的单元格内容和单元格格式

文章目录 单元格内容单元格格式常规格式数字格式 单元格内容 文本&#xff1a;只要不是纯数字&#xff0c;Excel 都默认是文本格式。 在 Excel 中&#xff0c;逻辑值只有两个&#xff1a;True 和 False。 全选一片区域&#xff0c;按 Delet 键删除内容时&#xff0c;确实可以删…...

4大软件测试策略的特点和区别(单元测试、集成测试、确认测试和系统测试)

四大软件测试策略分别是单元测试、集成测试、确认测试和系统测试。 一、单元测试 单元测试也称为模块测试&#xff0c;它针对软件中的最小单元&#xff08;如函数、方法、类、模块等&#xff09;进行测试&#xff0c;以验证其是否符合预期的行为和结果。单元测试通常由开发人…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...

Linux入门课的思维导图

耗时两周&#xff0c;终于把慕课网上的Linux的基础入门课实操、总结完了&#xff01; 第一次以Blog的形式做学习记录&#xff0c;过程很有意思&#xff0c;但也很耗时。 课程时长5h&#xff0c;涉及到很多专有名词&#xff0c;要去逐个查找&#xff0c;以前接触过的概念因为时…...