竞赛 深度学习OCR中文识别 - opencv python
文章目录
- 0 前言
- 1 课题背景
- 2 实现效果
- 3 文本区域检测网络-CTPN
- 4 文本识别网络-CRNN
- 5 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 **基于深度学习OCR中文识别系统 **
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:4分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 课题背景
在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。
高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。
本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。
2 实现效果
公式检测

纯文字识别

3 文本区域检测网络-CTPN
对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。
简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。

相关代码
def main(argv):pycaffe_dir = os.path.dirname(__file__)parser = argparse.ArgumentParser()# Required arguments: input and output.parser.add_argument("input_file",help="Input txt/csv filename. If .txt, must be list of filenames.\If .csv, must be comma-separated file with header\'filename, xmin, ymin, xmax, ymax'")parser.add_argument("output_file",help="Output h5/csv filename. Format depends on extension.")# Optional arguments.parser.add_argument("--model_def",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),help="Model definition file.")parser.add_argument("--pretrained_model",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),help="Trained model weights file.")parser.add_argument("--crop_mode",default="selective_search",choices=CROP_MODES,help="How to generate windows for detection.")parser.add_argument("--gpu",action='store_true',help="Switch for gpu computation.")parser.add_argument("--mean_file",default=os.path.join(pycaffe_dir,'caffe/imagenet/ilsvrc_2012_mean.npy'),help="Data set image mean of H x W x K dimensions (numpy array). " +"Set to '' for no mean subtraction.")parser.add_argument("--input_scale",type=float,help="Multiply input features by this scale to finish preprocessing.")parser.add_argument("--raw_scale",type=float,default=255.0,help="Multiply raw input by this scale before preprocessing.")parser.add_argument("--channel_swap",default='2,1,0',help="Order to permute input channels. The default converts " +"RGB -> BGR since BGR is the Caffe default by way of OpenCV.")parser.add_argument("--context_pad",type=int,default='16',help="Amount of surrounding context to collect in input window.")args = parser.parse_args()mean, channel_swap = None, Noneif args.mean_file:mean = np.load(args.mean_file)if mean.shape[1:] != (1, 1):mean = mean.mean(1).mean(1)if args.channel_swap:channel_swap = [int(s) for s in args.channel_swap.split(',')]if args.gpu:caffe.set_mode_gpu()print("GPU mode")else:caffe.set_mode_cpu()print("CPU mode")# Make detector.detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,input_scale=args.input_scale, raw_scale=args.raw_scale,channel_swap=channel_swap,context_pad=args.context_pad)# Load input.t = time.time()print("Loading input...")if args.input_file.lower().endswith('txt'):with open(args.input_file) as f:inputs = [_.strip() for _ in f.readlines()]elif args.input_file.lower().endswith('csv'):inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})inputs.set_index('filename', inplace=True)else:raise Exception("Unknown input file type: not in txt or csv.")# Detect.if args.crop_mode == 'list':# Unpack sequence of (image filename, windows).images_windows = [(ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)for ix in inputs.index.unique()]detections = detector.detect_windows(images_windows)else:detections = detector.detect_selective_search(inputs)print("Processed {} windows in {:.3f} s.".format(len(detections),time.time() - t))# Collect into dataframe with labeled fields.df = pd.DataFrame(detections)df.set_index('filename', inplace=True)df[COORD_COLS] = pd.DataFrame(data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)del(df['window'])# Save results.t = time.time()if args.output_file.lower().endswith('csv'):# csv# Enumerate the class probabilities.class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]df[class_cols] = pd.DataFrame(data=np.vstack(df['feat']), index=df.index, columns=class_cols)df.to_csv(args.output_file, cols=COORD_COLS + class_cols)else:# h5df.to_hdf(args.output_file, 'df', mode='w')print("Saved to {} in {:.3f} s.".format(args.output_file,time.time() - t))
CTPN网络结构

4 文本识别网络-CRNN
CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

整个CRNN网络结构包含三部分,从下到上依次为:
- CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
- RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
- CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。
CNN
卷积层的结构图:

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。
CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。
输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。
CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。
Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。
由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。
如下图所示:

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。
RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。
LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。
这里采用的是两层各256单元的双向 LSTM 网络:

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分
我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。
因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。
如下图所示:

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。
端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。
相关代码
def inference(self, inputdata, name, reuse=False):"""Main routine to construct the network:param inputdata::param name::param reuse::return:"""with tf.variable_scope(name_or_scope=name, reuse=reuse):# centerlized datainputdata = tf.divide(inputdata, 255.0)#1.特征提取阶段# first apply the cnn feature extraction stagecnn_out = self._feature_sequence_extraction(inputdata=inputdata, name='feature_extraction_module')#2.第二步, batch*1*25*512 变成 batch * 25 * 512# second apply the map to sequence stagesequence = self._map_to_sequence(inputdata=cnn_out, name='map_to_sequence_module')#第三步,应用序列标签阶段# third apply the sequence label stage# net_out width, batch, n_classes# raw_pred width, batch, 1net_out, raw_pred = self._sequence_label(inputdata=sequence, name='sequence_rnn_module')return net_out
5 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
竞赛 深度学习OCR中文识别 - opencv python
文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习OCR中文识别系统 ** 该项目较为新颖,适合作为竞赛课题方向,…...
XTU-OJ 1331-密码
题目描述 Eric喜欢使用数字1,2,3,4作为密码,而且他有个怪癖,相邻数字不能相同,且相差不能超过2。当然只用数字做密码,会比较弱,Eric想知道当长度为n时,这样的密码有多少种? 输入 第一行是一个整…...
【docker】ubuntu下安装
ubuntu下安装docker 卸载原生docker更新软件包安装依赖Docker官方GPG密钥添加软件来源仓库安装docker添加用户组运行docker安装工具重启dockerhelloworld 卸载原生docker $ apt-get remove docker docker-engine docker.io containerd runc更新软件包 apt-get update apt-get…...
Linux- 命名信号量和无名信号量的区别
命名信号量和无名信号量之间的区别主要在于它们的可见性、生命周期以及如何在进程或线程之间共享。根据这些特点,它们各自更适合不同的应用场景: 命名信号量: 可见性:命名信号量由一个与其关联的名称标识,通常在某种文…...
【C/C++】STL——深度剖析list容器
👻内容专栏: C/C编程 🐨本文概括:list的介绍与使用、深度剖析及模拟实现。 🐼本文作者: 阿四啊 🐸发布时间:2023.10.12 一、list的介绍与使用 1.1 list的介绍 cpluplus网站中有关…...
#力扣:136. 只出现一次的数字@FDDLC
136. 只出现一次的数字 - 力扣(LeetCode) 一、Java class Solution {public int singleNumber(int[] nums) {int ans 0;for(int num: nums) ans ^ num;return ans;} } 二、C class Solution { public:int singleNumber(vector<int>& nums…...
VR、AR、MR、XR到底都是什么?有什么区别
目录 VRARMRXRAR、VR、MR、XR的区别 VR 英:Virtual Reality 中文翻译:虚拟现实 又称计算机模拟现实。是指由计算机生成3D内容,为用户提供视觉、听觉等感官来模拟现实,具有很强的“临场感”和“沉浸感”。我们可以使用耳机、控制器…...
UE5射击游戏案例蓝图篇(一)
一、使用到的资源 1.小白人动画包 2.基础武器包 3.虚幻商城免费的模型包 二、角色创建 1.以Character为基类创建出需要的角色,双击打开之后并在已有组件的基础上,添加摄像机臂和摄像机两个组件。添加完成之后可以根据自己的需要调整摄像机臂的位置&…...
excel管理接口测试用例
闲话休扯,上需求:自动读取、执行excel里面的接口测试用例,测试完成后,返回错误结果并发送邮件通知。 分析: 1、设计excel表格 2、读取excel表格 3、拼接url,发送请求 4、汇总错误结果、发送邮件 开始实现…...
根文件系统制作并启动 Linux
根文件系统制作并启动 Linux busybox 下载链接:https://busybox.net/ 下载 wget https://busybox.net/downloads/busybox-1.36.1.tar.bz2解压 tar -vxf busybox-1.36.1.tar.bz2 并进入其根目录 export ARCHarm export CROSS_COMPILEarm-none-linux-gnueabihf- m…...
JSKarel教学编程机器人使用介绍
JSKarel教学编程机器人使用介绍 为了避免被编程语言固有的复杂性所困扰,有一个被称为卡雷尔(Karel)机器人的微型世界(microworld)的简化环境,可以让编程初学者从中学习理解编程的基本概念,而不…...
换低挡装置(Kickdown, ACM/ICPC NEERC 2006, UVa1588)rust解法
给出两个长度分别为n1,n2(n1,n2≤100)且每列高度只为1或2的长条。需要将它们放入一个高度为3的容器(如图3-8所示),问能够容纳它们的最短容器长度。 样例 2112112112 2212112 1012121212 2121…...
Windows10用Navicat 定时备份报错80070057
直接按照网上的教程配置定时任务发现报错,提示参数非法之类的,80070057。 搜索加自己测试发现是用户权限问题。 设置任务计划的时候,我用了用户组,选了administors,在勾选上run with hightest privileges。 查找用户…...
JimuReport 积木报表 v1.6.4 稳定版本正式发布 — 开源免费的低代码报表
项目介绍 一款免费的数据可视化报表,含报表和大屏设计,像搭建积木一样在线设计报表!功能涵盖,数据报表、打印设计、图表报表、大屏设计等! Web 版报表设计器,类似于excel操作风格,通过拖拽完成报…...
为什么要把 String 设计为不可变?
将字符串设计为不可变具有多个重要的原因: 线程安全性: 不可变字符串可以在多线程环境中共享而无需额外的同步措施。因为字符串不会改变,多个线程可以同时访问它而不会导致竞态条件或数据不一致性。 缓存和性能优化: 字符串不可变…...
华为OD机考算法题:服务器广播
题目部分 题目服务器广播难度难题目说明服务器连接方式包括直接相连,间接连接。A 和 B 直接连接,B 和 C 直接连接,则 A 和 C 间接连接。直接连接和间接连接都可以发送广播。 给出一个 N * N 数组,代表 N 个服务器,mat…...
Android ViewBinding和DataBinding功能作用区别
简述 ViewBinding和DataBinding都是用于在 Android 应用程序中处理视图的工具,但它们有不同的作用和用途。 ViewBinding: ViewBinding 是 Android Studio 的一个工具,用于生成一个绑定类,能够轻松访问 XML 布局文件中的视图。ViewBinding 为…...
【云计算网络安全】DDoS 攻击类型:什么是 ACK 洪水 DDoS 攻击
文章目录 一、什么是 ACK 洪水 DDoS 攻击?二、什么是数据包?三、什么是 ACK 数据包?四、ACK 洪水攻击如何工作?五、SYN ACK 洪水攻击如何工作?六、文末送书《AWD特训营》内容简介读者对象 一、什么是 ACK 洪水 DDoS 攻…...
springboot 导出word模板
一、安装依赖 <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId><version>1.12.1</version></dependency>二、定义工具类 package com.example.springbootmp.utils;import com.deepoove.poi.XWP…...
Angular安全专辑之五 —— 防止URL中敏感信息泄露
URL 中的敏感数据是指在网址上的机密或者个人信息,包括 UserId, usernames, passwords, session, token 等其他认证信息。 由于URL 可能会被第三方拦截和查看(比如互联网服务商、代理或者其他监视网络流量的攻击者),所以URL中的敏…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
