MATLAB——RBF、GRNN和PNN神经网络案例参考程序
欢迎关注“电击小子程高兴的MATLAB小屋”
%————RBF程序实例
%% I. 清空环境变量
clear all
clc
%% II. 训练集/测试集产生
%%
% 1. 导入数据
load spectra_data.mat
%%
% 2. 随机产生训练集和测试集
temp = randperm(size(NIR,1));
% 训练集——50个样本
P_train = NIR(temp(1:50),:)';
T_train = octane(temp(1:50),:)';
% 测试集——10个样本
P_test = NIR(temp(51:end),:)';
T_test = octane(temp(51:end),:)';
N = size(P_test,2);
%% III. RBF神经网络创建及仿真测试
%%
% 1. 创建网络
net = newrbe(P_train,T_train,0.09); %这里spread设置为30
%创建之后可以通过 w1=net.iw{1,1}; 隐含层和输入层的连接权值
%看看W1的转置是不是跟P_train 元素相等 isequal(w1',P_train)
%% b1=net.b{1}; edit newrbe 127 hang 30 看看相等不 sqrt(-log(.5))/30
%可以调整spread 设置newrbe中的断点x = t/[a1; ones(1,q)]; 运行 创建网络的函数语句
% 2. 仿真测试
T_sim = sim(net,P_test);
%% IV. 性能评价
%%
% 1. 相对误差error
error = abs(T_sim - T_test)./T_test;
%%
% 2. 决定系数R^2
R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2));
%%
% 3. 结果对比
result = [T_test' T_sim' error']
%% V. 绘图
figure
plot(1:N,T_test,'b:*',1:N,T_sim,'r-o')
legend('真实值','预测值')
xlabel('预测样本')
ylabel('辛烷值')
string = {'测试集辛烷值含量预测结果对比';['R^2=' num2str(R2)]};
title(string)
相关文章:
MATLAB——RBF、GRNN和PNN神经网络案例参考程序
欢迎关注“电击小子程高兴的MATLAB小屋” %————RBF程序实例 %% I. 清空环境变量 clear all clc %% II. 训练集/测试集产生 %% % 1. 导入数据 load spectra_data.mat %% % 2. 随机产生训练集和测试集 temp randperm(size(NIR,1)); % 训练集——50个样本 P_train NIR(t…...
E138: Can‘t write viminfo file
E138: Can’t write viminfo file /home/xxx/.viminfo! 原因 进入/home/xxx/目录下,用ls -a你会发现有很多.viminfa.tmp - .viminfz.tmp 这种的临时文件,这是因为使用vim编辑器时,如果编辑器没有正常退出就会生成一个暂存文件,…...
Compose Canvas基础(2) 图形转换
Compose Canvas基础(2)图形转换 前言平移 translate缩放 scale旋转 rotate自定义绘图区域及绘制内边距inset组合转换 withTransform完整代码总结 上一篇文章 Compose Canvas基础(1) drawxxx方法 前言 阅读本文需要一定compose基…...
【计算机网络笔记】分组交换中的报文交付时间计算例题
系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 系列文章目录题目解答 题目 在下图所示的采用“存储-转发”方式的分组交换网络中所有链路的数据传输速率为100 Mbps,分…...
JVS-rules规则引擎,解决大数据风控的自动化决策利器
规则引擎中的评分卡节点是一种用于评估客户信用、风险等级或其他指标的重要工具。它通常用于金融、信贷等领域,以便根据一系列预定义的规则和权重来对客户进行评分。以下是评分卡节点的主要功能、作用以及配置方式的介绍: 功能和作用: 评估…...
dvaJs在react 项目中的简单使用
官网:入门课 | DvaJS 备注:个人学习 代码示例: getColumns.js const getColumns [{title: 姓名, // 列标题dataIndex: name, // 数据字段名称,与数据中的字段名对应key: name, // 列的唯一键},{title: 年龄, // 列标题dataIn…...
如何将las数据转换为osgb数据?
答:如果是需要用点云建模可使用重建大师。如果只是想转换格式可以使用网格大师的点云转osgb工具。 重建大师是一款专为超大规模实景三维数据生产而设计的集群并行处理软件,输入倾斜照片,激光点云,POS信息及像控点,输出…...
创新与重塑,佛塑科技打造集团型 CRM 建设标杆
“十四五”时期是我国全面建成小康社会、实现第一个百年奋斗目标之后,乘势而上开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的第一个五年。 在政府有序推进“十四五”规划的进程中,佛山佛塑科技集团股份有限公司(证券简…...
STM32CUBEMX_DMA串口空闲中断接收+接收发送缓冲区
STM32CUBEMX_DMA串口空闲中断接收接收发送缓冲区 前言: 我了解的串口接收指令的方式有:在这里插入图片描述 1、接收数据中断特定帧尾 2、接收数据中断空闲中断 3、DMA接收空闲中断 我最推荐第三种,尤其是数据量比较大且频繁的时候 串口配置 …...
酸蚀刻对钛医药材料纳米形态表面特性及活化能的影响
引言 由于商业纯钛(CP Ti)具有抗腐蚀性,并且具有合适的机械性能以及生物相容性,因此,目前一直被用作牙科植入材料。为了在临床手术中获得高水平的成功,CP Ti的表面质量和形貌是影响植入手术结果的比较关键的因素之一,…...
iOS代码混淆工具推荐:IPA Guard详细介绍
iOS代码混淆工具推荐:IPA Guard详细介绍 目录 摘要: 引言 正文 1. IPA Guard概述 2. IPA Guard的功能特性 3. IPA Guard的混淆模式 4. 支持的语言 5. 使用场景 总结 参考资料 总结 参考资料 摘要: 了解并选择合适的iOS代码混淆工…...
Vue检测数据的原理
Vue能够对用户的数据进行响应式,也就是你在data中写了什么,你在模板中用到data的部分就会渲染成什么,那么Vue是怎么知道用户修改了data中的数据变化并对模板重新进行解析的呢? 在Vue将数据存储为自身的_data之前,Vue会…...
队列的运行算法
1.链队: 插入 删除 打印 取队顶 #include <stdio.h> #include <stdlib.h>typedef struct Qnode{int data;struct Qnode *next; }Qnode,*QuenePtr;typedef struct {QuenePtr front;QuenePtr rear; }LinkQueue; //初始化 void InitQueue(LinkQueue *q){(…...
KVM/qemu安装UOS 直接让输入用户密码
错误信息 安装后出现: 1、点击刚刚建立的虚拟机最上角感叹号(设备管理器) ----新建硬件---输入----类型:【通用 USB Mouse】。 ----新建硬件---输入----类型:【通用 USB keyboard】。 2、在设备管理器中----新建硬…...
画一条0.5px的线、设置小于12px的字体、解决 1px 问题
1、如何画一条0.5px的线 ① 采用 transform: scale() 的方式 该方法用来定义元素的 2D 缩放转换; .line {width: 100px;height: 40px;transform: scale(1,0.5);background-color: red;} ② 采用 meta viewport 的方式 这样就能缩放到原来的 0.5 倍,如…...
Unity中Shader的深度写入ZWrite
文章目录 前言一、更新深度缓冲区中值二、深度值的写入操作只有两个选择 开启 和 关闭ZWrite OnZWrite Off 三、深度写入在半透明物体物体中开启的情况1、特效一般都需要关闭深度写入2、如果在人物模型上使用 特效半透明 的 Shader,为了不出现模型自身穿透问题&…...
Jetson nano 系列之7—jetson 通过rtp将视频发给远程host
Jetson nano 系列之7—jetson 通过rtp将视频发给远程host 1.笔记本端配置1.1 安装VLC软件1.2 配置端口号1.3 创建SDP 文件2.执行命名,查看效果2.1 jetson端2.2 笔记本端参考文献本博客介绍了将jetson nano csi摄像头的视频通过rtp发给其他主机(这里是一台windows笔记本)。 …...
有哪些值得推荐的优秀 HTMLCSS 网站前端设计的网络资源(博客、论坛)?
前言 推荐几个有意思的CSS学习的网站和github上的学习类型的项目~ 网站推荐 1、CODEPEN 代码与所展示的页面相互对应,你可以在上面找到其他人已经写好的demo,参考 代码效果 网址:https://codepen.io 2、Coding Fantasy 通过游戏的形式来提…...
RTSP/Onvif安防视频平台EasyNVR级联至EasyNVS系统不显示通道,是什么原因?
视频安防监控平台EasyNVR可支持设备通过RTSP/Onvif协议接入,并能对接入的视频流进行处理与多端分发,包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等多种格式。 我们在此前的文章中也介绍过关于EasyNVR级联EasyNVS上云网关综合管理平台的内容ÿ…...
点云处理【三】(点云降采样)
点云降采样 第一章 点云数据采集 第二章 点云滤波 第二章 点云降采样 1. 为什么要降采样? 我们获得的数据量大,特别是几十万个以上的点云,里面有很多冗余数据,会导致处理起来比较耗时。 降采样是一种有效的减少数据、缩减计算量…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
