Java —— 运算符
目录
1. 什么是运算符
2. 算术运算符
2.1 基本四则运算符: 加减乘除模(+ - * / %)
2.2 增量运算符 += -= *= %=与 自增/自减运算符++ --
3. 关系运算符
4. 逻辑运算符
4.1 逻辑与 &&
4.2 逻辑或||
4.3 逻辑非 !
4.4 短路求值
5. 位运算符
5.1 按位与 &
5.2 按位或
5.3 按位取反 ~
5.4 按位异或 ^
6. 移位运算
6.1 左移 <<
6.2 右移 >>
6.3 无符号右移 >>>
7. 条件运算符
8. 运算符的优先级
1. 什么是运算符
计算机的最基本的用途之一就是执行数学运算,比如:
int a = 10;
int b = 20;a + b;
a < b; 上述+和<等就是运算符,即: 对操作数进行操作时的符号,不同运算符操作的含义不同。
作为一门计算机语言,Java也提供了一套丰富的运算符来操纵变量。Java中运算符可分为以下: 算术运算符(+-*/)、关系运算符(< > ==)、逻辑运算符、位运算符、移位运算符以及条件运算符等。
2. 算术运算符
2.1 基本四则运算符: 加减乘除模(+ - * / %)
加减乘由于较为简单, 和数学中的运算一样, 这里就略过不介绍.
System.out.println(5 / 2);//2
System.out.println(5.0 / 2);//2.5
System.out.println(5 / 2.0);//2.5
System.out.println((float) 5 / 2);//2.5
System.out.println(5 / (float) 2);//2.5
System.out.println((float) (5 / 2));//2.0System.out.println(10 % 3);//1
System.out.println(-10 % 3);//-1
System.out.println(10 % -3);//1
System.out.println(-10 % -3);//-1//% 不仅可以对整型取模,也可以对double类型取模,但是没有意义,一般都是对整形取模的
System.out.println(-12.5 % 10.5);//-2.0
System.out.println(11 % 10.5);//0.5//做除法和取模时,右操作数不能为0
//System.out.println(10/0);//int / int 结果还是int类型,而且会向下取整
int a = 3;
int b = 2;
// 在数学中应该是1.5 但是在Java中输出结果为1 会向下取整,即小数点之后全部舍弃掉了
System.out.println(a / b);
// 如果要得到数学中的结果,可以用double类型来接收
double d = a * 1.0 / b;
System.out.println(d);//两侧操作数类型不一致时,向类型大的提升
System.out.println(1+0.2);
// +的左侧是int,右侧是double,在加之前int被提升为double
// 故:输出1.2 2.2 增量运算符 += -= *= %=与 自增/自减运算符++ --
与C语言相同, 这里略过.
注意:
只有变量才能使用增量运算符,常量不能使用.
只有变量才能使用自增/自减运算符,常量不能使用,因为常量不允许被修改.
3. 关系运算符
关系运算符主要有六个: == != < > <= >= ,其计算结果是 true 或者 false 。
int a = 10;
int b = 20;
// 注意:在Java中 = 表示赋值,要与数学中的含义区分
// 在Java中 == 表示相等
System.out.println(a == b); // false
System.out.println(a != b); // true
System.out.println(a < b); // true
System.out.println(a > b); // false
System.out.println(a <= b); // true
System.out.println(a >= b); // false 注意:当需要多次判断时,不能连着写,比如:3 < a < 5,Java程序与数学中是有区别的
4. 逻辑运算符
逻辑运算符主要有三个: && ! || ,运算结果都是 boolean类型。
4.1 逻辑与 &&
语法规则:表达式1 && 表达式2,左右表达式必须是boolean类型的结果。
相当于现实生活中的且,比如:如果是学生,并且 带有学生证 才可以享受半票。
两个表达式都为真,结果才是真,只要有一个是假,结果就是假。
|
|
| 结果 |
|---|---|---|
| 真 | 真 | 真 |
| 真 | 假 | 假 |
| 假 | 真 | 假 |
| 假 | 假 | 假 |
int a = 1;
int b = 2;
System.out.println(a == 1 && b == 2); // 左为真 且 右为真 则结果为真
System.out.println(a == 1 && b > 100); // 左为真 但 右为假 则结果为假
System.out.println(a > 100 && b == 2); // 左为假 但 右为真 则结果为假
System.out.println(a > 100 && b > 100); // 左为假 且 右为假 则结果为假 4.2 逻辑或||
语法规则:表达式1 || 表达式2,左右表达式必须是boolean类型的结果。
相当于现实生活中的或,比如:买房子交钱时,全款 或者 按揭都可以,如果全款或者按揭,房子都是你的,否则站一边去。
|
|
| 结果 |
| 真 | 真 | 真 |
| 真 | 假 | 真 |
| 假 | 真 | 真 |
| 假 | 假 | 假 |
int a = 1;
int b = 2;
System.out.println(a == 1 || b == 2); // 左为真 且 右为真 则结果为真
System.out.println(a == 1 || b > 100); // 左为真 但 右为假 则结果也为真
System.out.println(a > 100 || b == 2); // 左为假 但 右为真 则结果也为真
System.out.println(a > 100 || b > 100); // 左为假 且 右为假 则结果为假 注意:左右表达式至少有一个为真,则结果为真
4.3 逻辑非 !
语法规则:! 表达式
真变假,假变真。
|
|
|
| 真 | 假 |
| 假 | 真 |
int a = 1;
System.out.println(!(a == 1)); // a == 1 为true,取个非就是false
System.out.println(!(a != 1)); // a != 1 为false,取个非就是true 4.4 短路求值
&& 和 遵守短路求值的规则.
System.out.println(10 > 20 && 10 / 0 == 0); // 打印 false
System.out.println(10 < 20 || 10 / 0 == 0); // 打印 true 我们都知道, 计算 10 / 0 会导致程序抛出异常. 但是上面的代码却能正常运行, 说明 10 / 0 并没有真正被求值.
注意:
- 对于 && , 如果左侧表达式值为 false, 则表达式结果一定是 false, 无需计算右侧表达式.
- 对于 || , 如果左侧表达式值为 true, 则表达式结果一定是 true, 无需计算右侧表达式.
- & 和 | 如果表达式结果为 boolean 时, 也表示逻辑运算. 但与 && 相比, 它们不支持短路求值.
System.out.println(10 > 20 & 10 / 0 == 0); // 程序抛出异常
System.out.println(10 < 20 | 10 / 0 == 0); // 程序抛出异常 5. 位运算符
Java 中数据存储的最小单位是字节,而数据操作的最小单位是比特位. 字节是最小的存储单位,每个字节是由8个二进制比特位组成的,多个字节组合在一起可以表示各种不同的数据。
位运算符主要有四个: & ~ ^ ,除~ 是一元运算符外,其余都是二元运算符。
位操作表示 按二进制位运算. 计算机中都是使用二进制来表示数据的(01构成的序列), 按位运算就是在按照二进制位的每一位依次进行计算.
5.1 按位与 &
如果两个二进制位都是 1, 则结果为 1, 否则结果为 0.
用途: 寻找二进制位中1的个数
int a = 10;
int b = 20;
System.out.println(a & b); 进行按位运算, 需要先把 10 和 20 转成二进制, 分别为 1010 和 10100

5.2 按位或
如果两个二进制位都是 0, 则结果为 0, 否则结果为 1.
System.out.println(a | b); 
注意: 当 & 和 的操作数为整数(int, short, long, byte) 的时候, 表示按位运算, 当操作数为 boolean 的时候, 表示逻辑运算.
5.3 按位取反 ~
如果该位为 0 则转为 1, 如果该位为 1 则转为 0
int a = 0xf;
System.out.printf("%x\n", ~a) 注意:
- 0x 前缀的数字为 十六进制 数字. 十六进制可以看成是二进制的简化表示方式. 一个十六进制数字对应 4个二进制位.
- 0xf 表示 10 进制的 15, 也就是二进制的 1111
- printf 能够格式化输出内容, %x 表示按照十六进制输出.
- \n 表示换行符
5.4 按位异或 ^
如果两个数字的二进制位相同, 则结果为 0, 相异则结果为 1.
int a = 0x1;
int b = 0x2;
System.out.printf("%x\n", a ^ b); 注意:如果两个数相同,则异或的结果为0
6. 移位运算
移位运算符的使用与C语言基本一致.
移位运算符有左移运算符<<和右移运算符>>, 以及无符号右移运算符>>>.
6.1 左移 <<
最左侧位不要了, 最右侧补 0.
数字4:
二进制位为0000 0100
0000 0100 << 1 = 0000 1000 => 8 => 4*2^1
0000 0100 << 2 = 0001 0000 => 16 => 4*2^2
所以我们发现每左移1, 就相当于是扩大了2倍.
注意:向左移位时,丢弃的是符号位,因此正数左移可能会编程负数。
6.2 右移 >>
最右侧位不要了, 最左侧补符号位(正数补0, 负数补1)
数字16: 0001 0000
0001 0000 >> 1 = 0000 1000 => 8 => 16/2^1
0001 0000 >> 2 = 0000 0100 => 4 => 16/2^2
所以右移相当于是做除法.
6.3 无符号右移 >>>
最右侧位不要了, 最左侧补 0.
int a = 0xffffffff;
System.out.printf("%x\n", a >>> 1); 运行结果(注意, 是按十六进制打印的)
7fffffff
注意:
1. 左移 1 位, 相当于原数字 * 2. 左移 N 位, 相当于原数字 * 2 的N次方.
2. 右移 1 位, 相当于原数字 / 2. 右移 N 位, 相当于原数字 / 2 的N次方.
3. 由于计算机计算移位效率高于计算乘除, 当某个代码正好乘除 2 的N次方的时候可以用移位运算代替.
4. 移动负数位或者移位位数过大都没有意义.
7. 条件运算符
条件运算符只有一个:
表达式1 ? 表达式2 : 表达式3
当 表达式1 的值为 true 时, 整个表达式的值为 表达式2 的值;
当 表达式1 的值为 false 时, 整个表达式的值为 表达式3 的值.
也是 Java 中唯一的一个 三目运算符, 是条件判断语句的简化写法.
// 求两个整数的最大值
int a = 10;
int b = 20;
int max = a > b ? a : b; 注意:
1. 表达式2和表达式3的结果要是同类型的,除非能发生类型隐式类型转换
//int c = a > b? 1 : 2.0; 2. 表达式不能单独存在,其产生的结果必须要被使用。
a > b? a : b; // 报错:Error:(15, 14) java: 不是语句 8. 运算符的优先级
在一条表达式中,各个运算符可以混合起来进行运算,但是运算符的优先级不同,比如:* 和 / 的优先级要高于+和 - ,有些情况下稍不注意,可能就会造成很大的麻烦。
// 求a和b的平均值
int a = 10;
int b = 20;
int c = a + (b - a) >> 1;
System.out.println(c); 上述表达式中,由于 + 的优先级要高于 >> , 因此a先和b-a的结果做加法,整体为20,最后再进行右移,因此结果为10。
注意:运算符之间是有优先级的. 具体的规则我们不必记忆. 在可能存在歧义的代码中加上括号即可.
// 求a和b的平均值
int a = 10;
int b = 20;
int c = a + ((b - a) >> 1);
System.out.println(c); 相关文章:
Java —— 运算符
目录 1. 什么是运算符 2. 算术运算符 2.1 基本四则运算符: 加减乘除模( - * / %) 2.2 增量运算符 - * %与 自增/自减运算符 -- 3. 关系运算符 4. 逻辑运算符 4.1 逻辑与 && 4.2 逻辑或|| 4.3 逻辑非 ! 4.4 短路求值 5. 位运算符 5.1 按位与 & 5.2 按位或 5.3 按位…...
【C++ 中的友元函数:解密其神秘面纱】
友元函数,作为C中一个重要但常常被误解的概念,经常让初学者感到困惑。本文将带您逐步了解友元函数的含义、用途以及如何正确使用它们。 什么是友元函数? 在C中,友元函数是一种特殊的函数,它允许某个类或类的成员函数…...
YOLOv8涨点技巧:手把手教程,注意力机制如何在不同数据集上实现涨点的工作,内涵多种网络改进方法
💡💡💡本文独家改进:手把手教程,解决注意力机制引入到YOLOv8在自己数据集不涨点的问题点,本文提供五种改进方法来解决此问题; ContextAggregation | 亲测在血细胞检测项目中涨点,…...
牛客:FZ12 牛牛的顺时针遍历
FZ12 牛牛的顺时针遍历 文章目录 FZ12 牛牛的顺时针遍历题目描述题解思路题解代码 题目描述 题解思路 通过一个变量来记录当前方向,遍历矩阵,每次遍历一条边,将该边的信息加入到结果中 题解代码 func spiralOrder(matrix [][]int) []int {…...
函数防抖(javaScript)
防抖说明 (1)防抖的目的: 当多次执行某一个动作的时候,限制函数调用的次数,节约资源。 (2)防抖的概念: 函数防抖(debounce):就是指触发事件后&…...
日常学习记录随笔-redis实战
redis的持久化(rdb,aof,混合持久化) redis的主从架构以及redis的哨兵架构 redis的clusterredis 是要做持久化的,一般用redis会把数据放到缓存中为了提升系统的性能 如果redis没有持久化,重启的化数据就会丢失,所有的请…...
MySQL事务MVCC详解
一、概述 MVCC (MultiVersion Concurrency Control) 叫做多版本并发控制机制。主要是通过数据多版本来实现读-写分离,做到即使有读写冲突时,也能做到不加锁,非阻塞并发读,从而提高数据库并发性能。 MVCC只在已提交读(…...
SQL RDBMS 概念
SQL RDBMS 概念 RDBMS是关系数据库管理系统(Relational Database Management System)的缩写。 RDBMS是SQL的基础,也是所有现代数据库系统(如MS SQL Server、IBMDB2、Oracle、MySQL和MicrosoftAccess)的基础。 关系数据库管理系统(Relational Database Management Sy…...
onlyoffice的介绍搭建、集成过程。Windows、Linux
文章目录 什么是onlyoffice功能系统要求安装必备组件 windows搭建资源下载安装数据库onlyoffice安装测试 Linux搭建dockerdocker-compose 项目中用到的技术,做个笔记哈~ 什么是onlyoffice 在本地服务器上安装ONLYOFFICE Docs Community Edition Community Edition…...
37. 解数独
编写一个程序,通过填充空格来解决数独问题。 数独的解法需 遵循如下规则: 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图) 数独部分空…...
git cherry-pick 合并某次提交
一、无冲突的情况 1、合并其它分支某次提交 切换到主分支,想把其他分支的某次commit修改 合并到主分支上, 可以用 git cherry-pick 命令 比如,其它分支,某次提交的commit Hash 是30e48158badc39801f1ce3cb375a07b872d6f220 &a…...
【面试HOT100】子串普通数组矩阵
系列综述: 💞目的:本系列是个人整理为了秋招面试的,整理期间苛求每个知识点,平衡理解简易度与深入程度。 🥰来源:材料主要源于LeetCodeHot100进行的,每个知识点的修正和深入主要参考…...
XPSpeak软件教程-科学指南针
在做X 射线光电子能谱(XPS)测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学仅仅是通过文献或者师兄师姐的推荐对XPS测试有了解,但是对于其软件操作还属于小白阶段,针对此,科学指南针检测平台团队…...
NLP算法面经 | 腾讯 VS 美团
作者 | 曾同学 编辑 | NewBeeNLP 面试锦囊之面经分享系列,持续更新中 后台回复『面试』加入讨论组交流噢 lz从3月初脚因打球扭伤了开始,投递简历,接二连三的面试鞭尸又面试,昨天才终于上岸了,分享经验~ 腾讯PCG看点&…...
【广州华锐互动】塔吊多人安拆VR互动培训系统
塔吊多人安拆VR互动培训系统由广州华锐互动制作,是一种基于VR技术的模拟实训系统,专门用于培训塔吊驾驶员和操作员。 在现实生活中,塔吊操作具有一定的危险性,尤其是在培训过程中容易发生意外。而使用VR互动实训系统,学…...
Linux性能优化--性能工具:特定进程内存
5.0 概述 本章介绍的工具使你能诊断应用程序与内存子系统之间的交互,该子系统由Linux内核和CPU管理。由于内存子系统的不同层次在性能上有数量级的差异,因此,修复应用程序使其有效地使用内存子系统会对程序性能产生巨大的影响。 阅读本章后&…...
MyLife - Docker安装rabbitmq
Docker安装rabbitmq 个人觉得像rabbitmq之类的基础设施在线上环境直接物理机安装使用可能会好些。但是在开发测试环境用docker容器还是比较方便的。这里学习下docker安装rabbitmq使用。 1. rabbitmq 镜像库地址 rabbitmq 镜像库地址:https://hub.docker.com/_/rabbi…...
Leetcode刷题详解——长度最小的子数组
1. 题目链接:209. 长度最小的子数组 2. 题目描述: 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度**。**如果不…...
客流人数管理新趋势:景区客流采集分析系统的功能特点
随着旅游业的蓬勃发展,越来越多的人选择前往景区进行休闲和旅游。然而,人流量的增加也给景区管理带来了一系列的挑战。为了更好地管理和运营景区,景区客流采集分析系统应运而生。 一、案例展示 二、产品卖点 该系统利用先进的人工智能算法和…...
【仙逆】王林极限跑酷,藤厉自食恶果,仙逆战斗获好评,张虎命运被改写
Hello,小伙伴们,我是小郑继续为大家深度解析国漫资讯。 最新一集《仙逆》已经更新,相信很多小伙伴都已经先睹为快,在击杀了白展之后,张虎和王林担心其师傅即墨老人报复,因此躲到看似安全的藤家城,以为那里有…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
