当前位置: 首页 > news >正文

怎么让英文大语言模型支持中文?--构建中文tokenization--继续预训练--指令微调

1 构建中文tokenization

参考链接:https://zhuanlan.zhihu.com/p/639144223

1.1 为什么需要 构建中文tokenization?

原始的llama模型对中文的支持不太友好,接下来本文将讲解如何去扩充vocab里面的词以对中文进行token化。

1.2 如何对 原始数据预处理?

每一行为一句或多句话。保存为语料corpus

1.3 如何构建中文的词库?

一般的,目前比较主流的是使用sentencepiece训练中文词库。
运行后会得到tokenizer.model和tokenizer.vocab两个文件。

1.4 如何使用transformers库加载sentencepiece模型?

它可以用transformers库里面的tokenizer对象加载读取。

1.5 如何合并英文词表和中文词表?

将原始词表中没有的新加入进去vocab.model。

for p in chinese_spm.pieces:piece = p.pieceif piece not in llama_spm_tokens_set:new_p = sp_pb2_model.ModelProto().SentencePiece()new_p.piece = piecenew_p.score = 0llama_spm.pieces.append(new_p)

1.6 怎么使用修改后的词表?

如果我们重新从头开始训练,那么其实使用起来很简单:

config = AutoConfig.from_pretrained(…)
tokenizer = LlamaTokenizer.from_pretrained(…)
model = LlamaForCausalLM.from_pretrained(…, config=config)
model_vocab_size = model.get_output_embeddings().weight.size(0)
model.resize_token_embeddings(len(tokenizer))

但是如果我们想要保留原始模型embedding的参数,那么我们可以这么做:

  1. 找到新词表和旧词表id之间的映射关系。
  2. 将模型里面新词表里面包含的旧词表用原始模型的embedding替换。
  3. 如果新词在旧词表里面没有出现就进行相应的初始化再进行赋值。
    具体怎么做可以参考一下这个:https://github.com/yangjianxin1/LLMPruner

1.7 总结一下 构建中文tokenization?

1、使用sentencepiece训练一个中文的词表。
2、使用transformers加载sentencepiece模型。
3、怎么合并中英文的词表,并使用transformers使用合并后的词表。
4、在模型中怎么使用新词表。

2 继续预训练篇

2.1 为什么需要进行继续预训练?

我们新增加了一些中文词汇到词表中,这些词汇是没有得到训练的,因此在进行指令微调之前我们要进行预训练。预训练的方式一般都是相同的,简单来说,就是根据上一个字预测下一个字是什么。

2.2 如何对 继续预训练 数据预处理?

先使用tokenizer()得到相关的输入,需要注意的是可能会在文本前后添加特殊的标记,比如bos_token_id和eos_token_id,针对于不同模型的tokneizer可能会不太一样。这里在input_ids前后添加了21134和21133两个标记。
然后将所有文本的input_ids、attention_mask, token_type_ids各自拼接起来(展开后拼接,不是二维数组之间的拼接),再设定一个最大长度block_size,这样得到最终的输入。

2.3 如何 构建模型?

我们可以使用同样的英文原模型,但是tokenizer换成我们新的tokenizer.由于tokenizer词表个数发生了变化,我们需要将模型的嵌入层和lm_head层的词表数目进行重新设置:
model_vocab_size = model.get_output_embeddings().weight.size(0)
model.resize_token_embeddings(len(tokenizer))

2.4 如何 使用模型?

按照transformer基本的使用模型的方法即可。可以用automodel, automodelforcasualLm等方法

3 对预训练模型进行指令微调

3.1 为什么需要对预训练模型进行指令微调?

如果需要模型能够进行相应的下游任务,我们就必须也对模型进行下游任务的指令微调。
只经过上面的继续与训练,模型能够获得基本的知识,但是更加领域的,特别的精细的指令还需要指令微调来获得。
对数据处理到训练、预测的整个流程有所了解,其实,基本上过程是差不多的。我们在选择好一个大语言模型之后。比如chatglm、llama、bloom等,要想使用它,得了解三个方面:输入数据的格式、tokenization、模型的使用方式。

3.2 对预训练模型进行指令微调 数据 如何处理?

指令微调的数据处理和继续与训练的数据处理相同。
需要注意的是根据微调任务不同,
将原本的分类或者预测任务,直接转变为特定单词或者句子的生成任务。并且添加特殊的标记。来区分不同的任务以及不同的结果。

3.3 对预训练模型进行指令微调 tokenization 如何构建?

与与训练的基本一致。
如果有针对某些特殊的字或者语言需要扩充语料库。可以使用保留字符,或者重新进行上面的【构建tokenization】任务

3.4 对预训练模型进行指令微调 模型 如何构建?

使用原有的模型,进行全参数微调。
也可以使用adapter的结构,将模型固定住,只训练少量参数
还可以使用prompt等其他的方式。不进行参数调整。只改变输入数据的信息

3.5 是否可以结合 其他库 使用?

可以
其它的一些就是结合一些库的使用了,比如:
deepspeed
transformers
peft中使用的lora
datasets加载数据
需要注意的是, 我们可以把数据拆分为很多小文件放在一个文件夹下,然后遍历文件夹里面的数据,用datasets加载数据并进行并行处理后保存到磁盘上。如果中间发现处理数据有问题的话要先删除掉保存的处理后的数据,再重新进行处理,否则的话就是直接加载保存的处理好的数据。
在SFT之后其实应该还有对齐这部分,就是对模型的输出进行规范,比如使用奖励模型+基于人类反馈的强化学习等,这里就不作展开了。

相关文章:

怎么让英文大语言模型支持中文?--构建中文tokenization--继续预训练--指令微调

1 构建中文tokenization 参考链接:https://zhuanlan.zhihu.com/p/639144223 1.1 为什么需要 构建中文tokenization? 原始的llama模型对中文的支持不太友好,接下来本文将讲解如何去扩充vocab里面的词以对中文进行token化。 1.2 如何对 原始数…...

笙默考试管理系统-MyExamTest----codemirror(35)

笙默考试管理系统-MyExamTest----codemirror(35) 目录 一、 笙默考试管理系统-MyExamTest 二、 笙默考试管理系统-MyExamTest 三、 笙默考试管理系统-MyExamTest 四、 笙默考试管理系统-MyExamTest 五、 笙默考试管理系统-MyExamTest 笙默考试…...

MMKV(2)

API 初始化和实例获取: MMKV.initialize(Context context): 初始化MMKV库。通常在应用程序的入口点调用此方法。 MMKV.defaultMMKV(): 获取默认的MMKV实例。默认实例使用默认的存储路径和加密方式。 MMKV.mmkvWithID(String mmapID): 根据给定的ID获取MMKV实例。…...

Spring Boot项目中使用 TrueLicense 生成和验证License(附源码)

1、Linux 在客户linux上新建layman目录,导入license.sh文件, [rootlocalhost layman]# mkdir -p /laymanlicense.sh文件内容: #!/bin/bash # 1.获取要监控的本地服务器IP地址 IPifconfig | grep inet | grep -vE inet6|127.0.0.1 | awk {p…...

ES6 Iterator 和 for...of 循环

1.iterator 概念 ES6 添加了Map和Set。这样就有了四种数据集合,需要一种统一的接口机制来处理所有不同的数据结构。遍历器(Iterator)就是这样一种机制。它是一种接口,为各种不同的数据结构提供统一的访问机制。任何数据结构只要部…...

ubuntu20.04 nvidia显卡驱动掉了,变成开源驱动,在软件与更新里选择专有驱动,下载出错,调整ubuntu镜像源之后成功修复

驱动配置好,环境隔了一段时间,打开Ubuntu发现装好的驱动又掉了,软件与更新 那里,附加驱动,显示开源驱动,命令行输入 nvidia-smi 命令查找不到驱动。 点击上面的 nvidia-driver-470(专有&#x…...

华为FAT模式无线AP配置实例

硬件:AP3010DN 软件版本:VRP software, Version 5.170 (AP3010DN-V2 FAT V200R010C00SPCf02) [Huawei]dis ver Huawei Versatile Routing Platform Software VRP (R) software, Version 5.170 (AP3010DN-V2 FAT V200R010C00SPCf02) Copyright (C) 2011…...

nodejs基于vue 学生论坛设计与实现

随着网络技术的不断成熟,带动了学生论坛,它彻底改变了过去传统的管理方式,不仅使服务管理难度变低了,还提升了管理的灵活性。 是本系统的开发平台 系统中管理员主要是为了安全有效地存储和管理各类信息, 这种个性化的平…...

017 基于Spring Boot的食堂管理系统

部分代码地址: https://github.com/XinChennn/xc017-stglxt 基于Spring Boot的食堂管理系统 项目介绍 本项目是基于Java的管理系统。采用前后端分离开发。前端基于bootstrap框架实现,后端使用Java语言开发,技术栈包括但不限于SpringBoot、…...

常用的二十种设计模式(下)-C++

设计模式 C中常用的设计模式有很多,设计模式是解决常见问题的经过验证的最佳实践。以下是一些常用的设计模式: 单例模式(Singleton):确保一个类只有一个实例,并提供一个全局访问点。工厂模式(…...

C#桶排序算法

前言 桶排序是一种线性时间复杂度的排序算法,它将待排序的数据分到有限数量的桶中,每个桶再进行单独排序,最后将所有桶中的数据按顺序依次取出,即可得到排序结果。 实现原理 首先根据待排序数据,确定需要的桶的数量。…...

快速了解服务器单CPU与双CPU

​  在当今快节奏的技术环境中,用户们对功能强大且高效的服务器配置需求不断增长。CPU作为构成任何计算基础设施的骨干,服务器的“大脑”,负责执行计算、控制数据流并协调各个组件之间的任务,是服务器选择硬件中的重要一环。因此…...

c# Dictionary、ConcurrentDictionary的使用

Dictionary Dictionary 用于存储键-值对的集合。如果需要高效地存储键-值对并快速查找,请使用 Dictionary。 注意,键必须是唯一的,值可以重复。 using System; using System.Collections.Generic; using System.Linq;class Program {stati…...

大数据中间件——Kafka

Kafka安装配置 首先我们把kafka的安装包上传到虚拟机中: 解压到对应的目录并修改对应的文件名: 首先我们来到kafka的config目录,我们第一个要修改的文件就是server.properties文件,修改内容如下: # Licensed to the …...

HarmonyOS/OpenHarmony原生应用-ArkTS万能卡片组件Slider

滑动条组件,通常用于快速调节设置值,如音量调节、亮度调节等应用场景。该组件从API Version 7开始支持。无子组件 一、接口 Slider(options?: {value?: number, min?: number, max?: number, step?: number, style?: SliderStyle, direction?: Ax…...

SpringCloud: sentinel链路限流

一、配置文件要增加 spring.cloud.sentinel.webContextUnify: false二、在要限流的业务方法上使用SentinelResource注解 package cn.edu.tju.service;import com.alibaba.csp.sentinel.annotation.SentinelResource; import com.alibaba.csp.sentinel.slots.block.BlockExcept…...

UML 中的关系

种类 继承、实现、组合、聚合、关联、依赖 理解 继承和实现的关系强度最大。组合代表着实体之间共同构成一个主体内部的组成部分无法单独支撑,聚合则代表层级更高的一种关联涉及的实体都是独立的个体共同组合起来构成一个主体 个体之间是可以单独工作的。 组合和…...

ChatGPT技术或加剧钓鱼邮件攻击

我们对ChatGPT这一新技术并不陌生,也早就听闻ChatGPT可以通过某种方式绕过安全机制,对目标进行入侵。 ChatGPT的“越狱”技术已经迭代数次,甚至有了先进的“邪恶GPT”WormGPT和FraudGPT,两者都能快速实现钓鱼邮件骗局。 安全分析…...

哨兵1号后向散射系数土壤水分反演

哨兵1号后向散射系数土壤水分反演 数据导入 打开之前预处理之后的VH和VV极化的后向散射系数转存的tiff文件 导入实测点 选择KML转图层 kml文件是由奥维地图导出的.ovkml格式改后缀名得到的 提取采样点的后向散射系数 选择多值提取至点 右键打开点图层的属性表,发现…...

day3:Node.js 基础知识

day3:Node.js 基础知识 ​ 文章目录 day3:Node.js 基础知识创建第一个应用事件循环机制异步编程模块系统函数与回调函数路由和全局对象创建第一个应用 实例如下,在你项目的根目录下创建一个叫 helloworld.js 的文件,并写入以下代码: var http = require(http);http.cre…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

12.找到字符串中所有字母异位词

🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

c# 局部函数 定义、功能与示例

C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...