【亲测可用】图像目标识别入门-利用笔记本电脑摄像头识别人脸标记出来采用深度学习模型实现
更高的精度和准确性,可以考虑使用基于深度学习的人脸检测和识别方法,例如基于人脸特征的人脸检测器和具有高识别率的人脸识别模型。下面是使用基于深度学习的人脸检测和识别方法的代码示例:
- 首先,安装必要的库和模型:
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple
- 接下来,使用dlib库进行人脸检测和形状预测,确保您已经安装了dlib库:
pip install dlib -i https://pypi.tuna.tsinghua.edu.cn/simple
- 然后,使用face_recognition库进行人脸编码和识别,确保您已经安装了face_recognition库:
pip install face_recognition -i https://pypi.tuna.tsinghua.edu.cn/simple
- 编写下面的代码,它将使用上述库来实现更高精度的人脸检测和识别:
import cv2
import face_recognition# 读取图像并进行人脸检测
def detect_faces(image):# 将图像转换为RGB格式rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 使用HOG人脸检测器检测人脸face_locations = face_recognition.face_locations(rgb_image, model='hog')return face_locations# 在图像中标记人脸
def mark_faces(image, face_locations):for top, right, bottom, left in face_locations:# 画一个矩形框标记人脸cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)return image# 打开摄像头
cap = cv2.VideoCapture(0)while True:# 读取摄像头的图像帧ret, frame = cap.read()# 进行人脸检测face_locations = detect_faces(frame)# 标记检测到的人脸marked_image = mark_faces(frame, face_locations)# 显示带有人脸标记的图像cv2.imshow('Face Detection', marked_image)# 检测按下键盘上的q键退出循环if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头,关闭窗口
cap.release()
cv2.destroyAllWindows()
此代码使用dlib库进行基于HOG的人脸检测,并使用face_recognition库对检测到的人脸进行编码和识别。它能够提供更高精度和准确性的人脸检测和识别结果,但它可能会导致更高的计算资源需求。
请注意,虽然使用基于深度学习的人脸检测和识别方法可以提供更高的精度,但其识别准确性仍然可能受到多种因素的影响,例如光照条件、人脸角度和遮挡。因此,在特定应用场景中,可能需要进一步优化和调整参数,或使用更复杂的人脸识别模型来提高准确性。
注意事项:安装不指定版本的dlib并不会安装所需要的动态库,一运行会报错:
import face_recognition File "D:\anaconda3-2023.07-2\envs\test_env-py3.8\lib\site-packages\face_recognition\__init__.py", line 7, in <module> from .api import load_image_file, face_locations, batch_face_locations, face_landmarks, face_encodings, compare_faces, face_distance File "D:\anaconda3-2023.07-2\envs\test_env-py3.8\lib\site-packages\face_recognition\api.py", line 4, in <module> import dlib File "D:\anaconda3-2023.07-2\envs\test_env-py3.8\lib\site-packages\dlib\__init__.py", line 19, in <module> from _dlib_pybind11 import * ImportError: DLL load failed while importing _dlib_pybind11: 找不到指定的模块。
制定版本安装时提示cmake没有:
pip install dlib==19.22.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting dlib==19.22.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/11/93/ec41d6ef7e769977aa08e49441c52276da27859f12dcbf1c6deb96ce5e9f/dlib-19.22.0.tar.gz (7.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.4/7.4 MB 14.4 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Building wheels for collected packages: dlib Building wheel for dlib (setup.py) ... error error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [7 lines of output] running bdist_wheel running build running build_py running build_ext ERROR: CMake must be installed to build dlib [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for dlib Running setup.py clean for dlib Failed to build dlib ERROR: Could not build wheels for dlib, which is required to install pyproject.toml-based projects
以下步骤安装cmake:
以下步骤进行操作:
-
访问CMake的官方网站:https://cmake.org/download/ ,在页面上找到“Download”按钮,点击进入下载页面。
-
在Windows下,您可以选择下载安装程序(Windows win64-x64 Installer),根据您的操作系统位数(64位或32位)选择相应的安装程序。
-
下载完成后,双击运行下载的安装程序。如果出现用户控制提示,请点击“是”继续。
-
在安装程序中,您可以选择是否将CMake添加到系统的环境变量中。建议勾选此选项,这样CMake就可以在任何位置都能够访问。
-
点击“Next”按钮,选择合适的安装选项。
-
点击“Install”按钮开始安装。等待安装程序完成安装过程。
-
安装完成后,您可以在开始菜单中找到CMake,或者在命令提示符窗口中运行以下命令来验证安装:
cmake --version如果命令能够正确执行并显示CMake的版本信息,则说明CMake已成功安装。
相关文章:
【亲测可用】图像目标识别入门-利用笔记本电脑摄像头识别人脸标记出来采用深度学习模型实现
更高的精度和准确性,可以考虑使用基于深度学习的人脸检测和识别方法,例如基于人脸特征的人脸检测器和具有高识别率的人脸识别模型。下面是使用基于深度学习的人脸检测和识别方法的代码示例: 首先,安装必要的库和模型:…...
数字孪生技术:煤矿运输的未来革命
煤矿是我国能源工业的重要支柱,然而,煤矿运输过程中一直存在着诸多问题,如安全隐患、能源浪费、效率低下等,这不仅对煤矿行业的可持续发展构成威胁,也对环境造成负面影响。因此,数字孪生技术应运而生&#…...
一些bug总结
今天被几个小问题和bug折磨了一天,来总结一下… 权限问题 用vscode连接服务器,如果是在root用户连接的情况下新建的文件/文件夹,然后切换到别的用户的时候去写的代码 可能会遇到各种问题 解决方案是更改文件或文件夹的所有权。这可以通过使用…...
第三章 内存管理 九、基本分段存储管理方式
目录 一、概括 二、什么是分段 三、段表 四、地址转换 五、分段和分页的对比 六、总结 一、概括 基本分段存储管理方式是一种操作系统的内存管理方式,采用这种方式,将进程所需的内存分成若干个段,每个段都可以单独进行管理和保护。 具…...
轻重链剖分+启发式合并专题
Codeforces-741D(Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths) 一棵根为1 的树,每条边上有一个字符(a-v共22种)。 一条简单路径被称为Dokhtar-kosh当且仅当路径上的字符经过重新排序后可以变成一个回文串。 求每个子树中…...
IRC/ML:金融智能风控—信贷风控场景简介、两大场景(贷款场景+信用卡场景)、信用卡评分模型设计、反欺诈检测技术的简介、案例应用之详细攻略
IRC/ML:金融智能风控—信贷风控场景简介、两大场景(贷款场景+信用卡场景)、信用卡评分模型设计、反欺诈检测技术的简介、案例应用之详细攻略 目录 信贷风控简介 信贷风控两大场景...
【学习笔记】RabbitMQ01:基础概念认识以及快速部署
参考资料 RabbitMQ官方网站RabbitMQ官方文档噼咔噼咔-动力节点教程 文章目录 一、认识RabbitMQ1.1 消息中间件(MQ Message Queue 消息队列1.2 主流的消息中间件1.3 MQ的应用场景1.3.1 异步处理1.3.2 系统解耦1.3.3 流量削峰1.3.4 日志处理 二、RabbitMQ运行环境搭建…...
Java数据结构之第二十章、手撕平衡AVL树
目录 一、二叉平衡树 1.1二叉搜索树回顾以及性能分析 1.1.1二叉搜索树的概念 1.2二叉搜索树的查找 1.3二叉树查询性能分析 二、AVL树 2.1AVL树的概念 2.2AVL树节点的定义 2.3AVL树的插入 2.4AVL树的旋转 2.4.1新节点插入较高左子树的左侧---右单旋 2.4.2新节点插入较…...
SQL 在PostgreSQL中使用SQL将多行连接成数组
在本文中,我们将介绍如何使用SQL语言在PostgreSQL数据库中将多行数据连接成一个数组。在开发和分析应用程序时,我们经常需要将数据库中的多个行合并为一个,以便更方便地进行处理和分析。PostgreSQL提供了一种名为ARRAY_AGG的聚合函数…...
Ajax技术实现前端开发
一、原生AJAX 1.1AJAX 简介 AJAX 全称为Asynchronous JavaScript And XML,就是异步的JS 和XML。 通过AJAX 可以在浏览器中向服务器发送异步请求,最大的优势:无刷新获取数据。 AJAX 不是新的编程语言,而是一种将现有的标准组合在一起使用的新方式。 1.2XML 简介 XML 可扩…...
WebMail:网页注册成功发送邮件
1.特别注意 isELIgnored"false" 如果没有这个El表达式无法识别 2.pre work pox.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>3.8.1</version><scope>…...
Electron之集成vue+vite开发桌面程序
在electron中集成vue开发桌面程序 使用我们之前创建的electron项目 创建vue 项目 命令行进入electron根目录 执行下面命令 npm create vitelatest vue -- --template vue这样就创建了一个vue项目,文件名是vue,命令行进入vue下,执行下面命…...
pycharm社区版创建Django项目的一种方式
pycharm社区版创建Django项目 pycharm创建New project安装django,如果安装过可略过安装完成后查看安装情况生成Django项目需要的文件这里注意生成语句后面的 . 不可以省略 生成文件后,框架搭建完成,配置启动我这里在配置完后,报了…...
Python configparser模块使用教程
文章目录 .ini 拓展名文件简介.ini 文件格式1. 节2. 参数3. 注解 configparser 模块简介configparser 模块的初始化和读取获取 ini 中所有 section获取 section 下的 key获取 section 下的 value获取指点section的所用配置信息修改某个key,如果不存在则会出创建检查…...
Kotlin + 协程 + Room 结合使用
文章目录 前言集成Room结合协程的使用总结 一、前言, 现在kotlin 是趋势,那必然就要用到协程,还有就是随着jetpack 的发力,带来了很多好用的库,比如今天提到Room,是一个类似greenDao的数据库。它不但支持kotlin协程…...
网工记背命令(6)----链路聚合配置
目录 1.配置手工负载分担模式链路聚合 2.配置LACP模式的链路聚合 3.HUAWEI设备与C厂商设备对接 链路聚合(Link Aggregation)是将多条物理链路捆绑在一起成为一条逻辑链路,从而增加链路带 宽的技术。 常用配置命令 1、执行命令 interface …...
使用 Service 把前端连接到后端
使用 Service 把前端连接到后端 如何创建前端(Frontend)微服务和后端(Backend)微服务。后端微服务是一个 hello 欢迎程序。 前端通过 nginx 和一个 Kubernetes 服务暴露后端所提供的服务。 使用部署对象(Deployment ob…...
vue 如何优化首页的加载速度?vue 首页白屏是什么问题引起的?如何解决呢?
vue 如何优化首页的加载速度? 路由懒加载ui框架按需加载gzip压缩 vue首页白屏是什么问题引起的 第一种,打包后文件引用路径不对,导致找不到文件报错白屏 解决办法:修改一下config下面的index.js中bulid模块导出的路径。因为in…...
Android平台GB28181设备接入模块之SmartGBD
大牛直播SDK研发的Android平台GB28181设备接入SDK(SmartGBD),可实现不具备国标音视频能力的 Android终端,通过平台注册接入到现有的GB/T28181—2016服务,可用于如执法记录仪、智能安全帽、智能监控、智慧零售、智慧教育…...
JVM第十三讲:调试排错 - JVM 调优参数
调试排错 - JVM 调优参数 本文是JVM第十三讲,调试排错 - JVM 调优参数。对JVM涉及的常见的调优参数和垃圾回收参数进行阐述。 文章目录 调试排错 - JVM 调优参数1、Jvm参数2、垃圾回收 问题1:线上ECS治理问题2:白龙马线上服务机JVM参数配置&a…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
