[Machine Learning][Part 6]Cost Function代价函数和梯度正则化
目录
拟合
欠拟合
过拟合
正确的拟合
解决过拟合的方法:正则化
线性回归模型和逻辑回归模型都存在欠拟合和过拟合的情况。
拟合
来自百度的解释:
数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合(fitting)。
个人理解,拟合就是根据已有数据来建立的一个数学模型,这个数据模型能最大限度的包含现有的数据。这样预测的数据就能最大程度的符合现有情况。
欠拟合
所建立的模型与现有数据匹配度较低如下图的分类模型,决策边界并不能很好的区分目前的数据
当训练数据的特征值较少的时候会出现欠拟合

过拟合
模型过于匹配现有数据,导致模型不能推广应用到更多数据中去。当训练数据的特征值太多的时候会出现这种情况。

正确的拟合
介于欠拟合和过拟合之间

解决过拟合的方法:正则化
解决过拟合的方法是将模型正则化,就是说把不是主要特征的w_j调整为无限接近于0,然后训练模型,这样来寻找最优的模型。这样存在一个问题,怎么分辨特征是不是主要特征呢?这个是不好分辨的,因此是把所有的特征都正则化,正则化的公式为:
线性回归cost function:

逻辑回归cost function:

适用于线性回归和逻辑回归的梯度下降函数:

实现代码:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from plt_overfit import overfit_example, outputnp.set_printoptions(precision=8)def sigmoid(z):"""Compute the sigmoid of zArgs:z (ndarray): A scalar, numpy array of any size.Returns:g (ndarray): sigmoid(z), with the same shape as z"""g = 1/(1+np.exp(-z))return gdef compute_cost_linear_reg(X, y, w, b, lambda_ = 1):"""Computes the cost over all examplesArgs:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters b (scalar) : model parameterlambda_ (scalar): Controls amount of regularizationReturns:total_cost (scalar): cost """m = X.shape[0]n = len(w)cost = 0.for i in range(m):f_wb_i = np.dot(X[i], w) + b #(n,)(n,)=scalar, see np.dotcost = cost + (f_wb_i - y[i])**2 #scalar cost = cost / (2 * m) #scalar reg_cost = 0for j in range(n):reg_cost += (w[j]**2) #scalarreg_cost = (lambda_/(2*m)) * reg_cost #scalartotal_cost = cost + reg_cost #scalarreturn total_cost #scalarnp.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print("Regularized cost:", cost_tmp)def compute_cost_logistic_reg(X, y, w, b, lambda_ = 1):"""Computes the cost over all examplesArgs:Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters b (scalar) : model parameterlambda_ (scalar): Controls amount of regularizationReturns:total_cost (scalar): cost """m,n = X.shapecost = 0.for i in range(m):z_i = np.dot(X[i], w) + b #(n,)(n,)=scalar, see np.dotf_wb_i = sigmoid(z_i) #scalarcost += -y[i]*np.log(f_wb_i) - (1-y[i])*np.log(1-f_wb_i) #scalarcost = cost/m #scalarreg_cost = 0for j in range(n):reg_cost += (w[j]**2) #scalarreg_cost = (lambda_/(2*m)) * reg_cost #scalartotal_cost = cost + reg_cost #scalarreturn total_cost #scalarnp.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print("Regularized cost:", cost_tmp)def compute_gradient_linear_reg(X, y, w, b, lambda_): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters b (scalar) : model parameterlambda_ (scalar): Controls amount of regularizationReturns:dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar): The gradient of the cost w.r.t. the parameter b. """m,n = X.shape #(number of examples, number of features)dj_dw = np.zeros((n,))dj_db = 0.for i in range(m): err = (np.dot(X[i], w) + b) - y[i] for j in range(n): dj_dw[j] = dj_dw[j] + err * X[i, j] dj_db = dj_db + err dj_dw = dj_dw / m dj_db = dj_db / m for j in range(n):dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]return dj_db, dj_dwnp.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp = compute_gradient_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )def compute_gradient_logistic_reg(X, y, w, b, lambda_): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters b (scalar) : model parameterlambda_ (scalar): Controls amount of regularizationReturnsdj_dw (ndarray Shape (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar) : The gradient of the cost w.r.t. the parameter b. """m,n = X.shapedj_dw = np.zeros((n,)) #(n,)dj_db = 0.0 #scalarfor i in range(m):f_wb_i = sigmoid(np.dot(X[i],w) + b) #(n,)(n,)=scalarerr_i = f_wb_i - y[i] #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + err_i * X[i,j] #scalardj_db = dj_db + err_idj_dw = dj_dw/m #(n,)dj_db = dj_db/m #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]return dj_db, dj_dw np.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp = compute_gradient_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )plt.close("all")
display(output)
ofit = overfit_example(True)
逻辑回归输出为:

相关文章:
[Machine Learning][Part 6]Cost Function代价函数和梯度正则化
目录 拟合 欠拟合 过拟合 正确的拟合 解决过拟合的方法:正则化 线性回归模型和逻辑回归模型都存在欠拟合和过拟合的情况。 拟合 来自百度的解释: 数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条…...
工业自动化编程与数字图像处理技术
工业自动化编程与数字图像处理技术 编程是计算机领域的基础技能,对于从事软件开发和工程的人来说至关重要。在工业自动化领域,C/C仍然是主流的编程语言,特别是用于工业界面(GUI)编程。工业界面是供车间操作员使用的,使用诸如Hal…...
JY61P.C
/** File Name : JY61P.cDescription : attention © Copyright (c) 2020 STMicroelectronics. All rights reserved.This software component is licensed by ST under Ultimate Liberty licenseSLA0044, the “License”; You may not use this file except in complian…...
Go编程:使用 Colly 库下载Reddit网站的图像
概述 Reddit是一个社交新闻网站,用户可以发布各种主题的内容,包括图片。本文将介绍如何使用Go语言和Colly库编写一个简单的爬虫程序,从Reddit网站上下载指定主题的图片,并保存到本地文件夹中。为了避免被目标网站反爬,…...
高性能日志脱敏组件:已支持 log4j2 和 logback 插件
项目介绍 日志脱敏是常见的安全需求。普通的基于工具类方法的方式,对代码的入侵性太强,编写起来又特别麻烦。 sensitive提供基于注解的方式,并且内置了常见的脱敏方式,便于开发。 同时支持 logback 和 log4j2 等常见的日志脱敏…...
一文读懂PostgreSQL中的索引
前言 索引是加速搜索引擎检索数据的一种特殊表查询。简单地说,索引是一个指向表中数据的指针。一个数据库中的索引与一本书的索引目录是非常相似的。 拿汉语字典的目录页(索引)打比方,我们可以按拼音、笔画、偏旁部首等排序的目录…...
windows的批量解锁
场景 场景是我从github上拉了一个c#项目启动的时候报错, 1>C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\Bin\amd64\Microsoft.Common.CurrentVersion.targets(3327,5): error MSB3821: 无法处理文件 UI\Forms\frmScriptBuilder.…...
Nginx配置微服务避免actuator暴露
微服务一般在扫漏洞的情况下,需要屏蔽actuator健康检查 # 避免actuator暴露 if ($request_uri ~ "/actuator") { return 403; }...
GEE——在GEE中计算地形位置指数TPI
简介: DEM中的TPI计算是指通过计算每个像元高程与其邻域高程的差值来计算地形位置指数(Topographic Position Index)。TPI 是描述地形起伏度和地形形态的一个重要指标,可以用于地貌分类、土壤侵蚀、植被分布等领域。 地形位置指数(Topographic Position Index,TPI)是用…...
树的基本操作(数据结构)
树的创建 //结构结点 typedef struct Node {int data;struct Node *leftchild;struct Node *rightchild; }*Bitree,BitNode;//初始化树 void Create(Bitree &T) {int d;printf("输入结点(按0为空结点):");scanf("%d",&d);if(d!0){T (Bitree)ma…...
Python复刻游戏《贪吃蛇大作战》
入门教程、案例源码、学习资料、读者群 请访问: python666.cn 大家好,欢迎来到 Crossin的编程教室 ! 曾经有一款小游戏刷屏微信朋友圈,叫做《贪吃蛇大作战》。一个简单到不行的游戏,也不知道怎么就火了,还上…...
SpringCloud之Gateway整合Sentinel服务降级和限流
1.下载Sentinel.jar可以图形界面配置限流和降级规则 地址:可能需要翻墙 下载jar文件 2.引入maven依赖 <!-- spring cloud gateway整合sentinel的依赖--><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-alibaba-s…...
深度学习——深度卷积神经网络(AlexNet)
深度学习——深度卷积神经网络(AlexNet) 文章目录 前言一、学习表征二、AlexNet实现2.1. 模型设计2.2. 激活函数2.3. 容量控制与预处理2.4. 训练模型 总结 前言 在前面学习了卷积神经网络的基本原理,之后将继续学习现代卷积神经网络架构。而本章将学习其…...
提高编程效率-Vscode实用指南
您是否知道全球73%的开发人员依赖同一个代码编辑器? 是的,2023 年 Stack Overflow 开发者调查结果已出炉,Visual Studio Code 迄今为止再次排名第一最常用的开发环境。 “Visual Studio Code 仍然是所有开发人员的首选 IDE,与专业…...
ES 数据库
ES 数据库 通过 API 查询通过 JSON 查询 熟悉 es 的同学都知道 es 一般有两种查询方式 1,在 java 中构建查询对象,调用 es 提供的 api 做查询 2,使用 json 调用接口做查询 查询语句无非是将足够的信息丢给数据库,但是它却和 SQL …...
面试经典150题——Day14
文章目录 一、题目二、题解 一、题目 134. Gas Station There are n gas stations along a circular route, where the amount of gas at the ith station is gas[i]. You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from the ith stati…...
Pika v3.5.1发布!
Pika 社区很高兴宣布,我们今天发布已经过我们生产环境验证 v3.5.1 版本,https://github.com/OpenAtomFoundation/pika/releases/tag/v3.5.1 。 该版本不仅做了很多优化工作,还引入了多项新功能。这些新功能包括 动态关闭 WAL、ReplicationID…...
Kotlin中的数组
数组是一种常见的数据结构,用于存储相同类型的多个元素。在 Kotlin 中,我们可以使用不同的方式声明、初始化和操作数组。 在 Kotlin 中,有多种方式可以定义和操作数组。我们将通过以下示例代码来展示不同的数组操作: fun main()…...
(3) OpenCV图像处理kNN近邻算法-识别摄像头数字
目录 一、代码简介 二、程序代码 三、使用的图片资源 1、图片digits.png...
上海亚商投顾:沪指震荡调整 转基因概念股逆势大涨
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 沪指昨日低开低走,深成指、创业板指均跌超1%,双双创出年内新低。转基因概念股逆势大涨…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)
引言 在嵌入式系统中,用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例,介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单,执行相应操作,并提供平滑的滚动动画效果。 本文设计了一个…...
spring boot使用HttpServletResponse实现sse后端流式输出消息
1.以前只是看过SSE的相关文章,没有具体实践,这次接入AI大模型使用到了流式输出,涉及到给前端流式返回,所以记录一下。 2.resp要设置为text/event-stream resp.setContentType("text/event-stream"); resp.setCharacter…...
深入浅出JavaScript中的ArrayBuffer:二进制数据的“瑞士军刀”
深入浅出JavaScript中的ArrayBuffer:二进制数据的“瑞士军刀” 在JavaScript中,我们经常需要处理文本、数组、对象等数据类型。但当我们需要处理文件上传、图像处理、网络通信等场景时,单纯依赖字符串或数组就显得力不从心了。这时ÿ…...
