当前位置: 首页 > news >正文

[Machine Learning][Part 6]Cost Function代价函数和梯度正则化

目录

拟合

欠拟合

过拟合

正确的拟合

解决过拟合的方法:正则化


线性回归模型和逻辑回归模型都存在欠拟合和过拟合的情况。

拟合

来自百度的解释:

数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合(fitting)。

个人理解,拟合就是根据已有数据来建立的一个数学模型,这个数据模型能最大限度的包含现有的数据。这样预测的数据就能最大程度的符合现有情况。

欠拟合

所建立的模型与现有数据匹配度较低如下图的分类模型,决策边界并不能很好的区分目前的数据

当训练数据的特征值较少的时候会出现欠拟合

过拟合

模型过于匹配现有数据,导致模型不能推广应用到更多数据中去。当训练数据的特征值太多的时候会出现这种情况。

正确的拟合

介于欠拟合和过拟合之间

 

解决过拟合的方法:正则化

 解决过拟合的方法是将模型正则化,就是说把不是主要特征的w_j调整为无限接近于0,然后训练模型,这样来寻找最优的模型。这样存在一个问题,怎么分辨特征是不是主要特征呢?这个是不好分辨的,因此是把所有的特征都正则化,正则化的公式为:

线性回归cost function:

逻辑回归cost function:

适用于线性回归和逻辑回归的梯度下降函数:

实现代码:

import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from plt_overfit import overfit_example, outputnp.set_printoptions(precision=8)def sigmoid(z):"""Compute the sigmoid of zArgs:z (ndarray): A scalar, numpy array of any size.Returns:g (ndarray): sigmoid(z), with the same shape as z"""g = 1/(1+np.exp(-z))return gdef compute_cost_linear_reg(X, y, w, b, lambda_ = 1):"""Computes the cost over all examplesArgs:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:total_cost (scalar):  cost """m  = X.shape[0]n  = len(w)cost = 0.for i in range(m):f_wb_i = np.dot(X[i], w) + b                                   #(n,)(n,)=scalar, see np.dotcost = cost + (f_wb_i - y[i])**2                               #scalar             cost = cost / (2 * m)                                              #scalar  reg_cost = 0for j in range(n):reg_cost += (w[j]**2)                                          #scalarreg_cost = (lambda_/(2*m)) * reg_cost                              #scalartotal_cost = cost + reg_cost                                       #scalarreturn total_cost                                                  #scalarnp.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print("Regularized cost:", cost_tmp)def compute_cost_logistic_reg(X, y, w, b, lambda_ = 1):"""Computes the cost over all examplesArgs:Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:total_cost (scalar):  cost """m,n  = X.shapecost = 0.for i in range(m):z_i = np.dot(X[i], w) + b                                      #(n,)(n,)=scalar, see np.dotf_wb_i = sigmoid(z_i)                                          #scalarcost +=  -y[i]*np.log(f_wb_i) - (1-y[i])*np.log(1-f_wb_i)      #scalarcost = cost/m                                                      #scalarreg_cost = 0for j in range(n):reg_cost += (w[j]**2)                                          #scalarreg_cost = (lambda_/(2*m)) * reg_cost                              #scalartotal_cost = cost + reg_cost                                       #scalarreturn total_cost                                                  #scalarnp.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print("Regularized cost:", cost_tmp)def compute_gradient_linear_reg(X, y, w, b, lambda_): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar):       The gradient of the cost w.r.t. the parameter b. """m,n = X.shape           #(number of examples, number of features)dj_dw = np.zeros((n,))dj_db = 0.for i in range(m):                             err = (np.dot(X[i], w) + b) - y[i]                 for j in range(n):                         dj_dw[j] = dj_dw[j] + err * X[i, j]               dj_db = dj_db + err                        dj_dw = dj_dw / m                                dj_db = dj_db / m   for j in range(n):dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]return dj_db, dj_dwnp.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp =  compute_gradient_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )def compute_gradient_logistic_reg(X, y, w, b, lambda_): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturnsdj_dw (ndarray Shape (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar)            : The gradient of the cost w.r.t. the parameter b. """m,n = X.shapedj_dw = np.zeros((n,))                            #(n,)dj_db = 0.0                                       #scalarfor i in range(m):f_wb_i = sigmoid(np.dot(X[i],w) + b)          #(n,)(n,)=scalarerr_i  = f_wb_i  - y[i]                       #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + err_i * X[i,j]      #scalardj_db = dj_db + err_idj_dw = dj_dw/m                                   #(n,)dj_db = dj_db/m                                   #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]return dj_db, dj_dw  np.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp =  compute_gradient_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )plt.close("all")
display(output)
ofit = overfit_example(True)

 逻辑回归输出为:

相关文章:

[Machine Learning][Part 6]Cost Function代价函数和梯度正则化

目录 拟合 欠拟合 过拟合 正确的拟合 解决过拟合的方法:正则化 线性回归模型和逻辑回归模型都存在欠拟合和过拟合的情况。 拟合 来自百度的解释: 数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条…...

工业自动化编程与数字图像处理技术

工业自动化编程与数字图像处理技术 编程是计算机领域的基础技能,对于从事软件开发和工程的人来说至关重要。在工业自动化领域,C/C仍然是主流的编程语言,特别是用于工业界面(GUI)编程。工业界面是供车间操作员使用的,使用诸如Hal…...

JY61P.C

/** File Name : JY61P.cDescription : attention © Copyright (c) 2020 STMicroelectronics. All rights reserved.This software component is licensed by ST under Ultimate Liberty licenseSLA0044, the “License”; You may not use this file except in complian…...

Go编程:使用 Colly 库下载Reddit网站的图像

概述 Reddit是一个社交新闻网站,用户可以发布各种主题的内容,包括图片。本文将介绍如何使用Go语言和Colly库编写一个简单的爬虫程序,从Reddit网站上下载指定主题的图片,并保存到本地文件夹中。为了避免被目标网站反爬&#xff0c…...

高性能日志脱敏组件:已支持 log4j2 和 logback 插件

项目介绍 日志脱敏是常见的安全需求。普通的基于工具类方法的方式,对代码的入侵性太强,编写起来又特别麻烦。 sensitive提供基于注解的方式,并且内置了常见的脱敏方式,便于开发。 同时支持 logback 和 log4j2 等常见的日志脱敏…...

一文读懂PostgreSQL中的索引

前言 索引是加速搜索引擎检索数据的一种特殊表查询。简单地说,索引是一个指向表中数据的指针。一个数据库中的索引与一本书的索引目录是非常相似的。 拿汉语字典的目录页(索引)打比方,我们可以按拼音、笔画、偏旁部首等排序的目录…...

windows的批量解锁

场景 场景是我从github上拉了一个c#项目启动的时候报错, 1>C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\Bin\amd64\Microsoft.Common.CurrentVersion.targets(3327,5): error MSB3821: 无法处理文件 UI\Forms\frmScriptBuilder.…...

Nginx配置微服务避免actuator暴露

微服务一般在扫漏洞的情况下,需要屏蔽actuator健康检查 # 避免actuator暴露 if ($request_uri ~ "/actuator") { return 403; }...

GEE——在GEE中计算地形位置指数TPI

简介: DEM中的TPI计算是指通过计算每个像元高程与其邻域高程的差值来计算地形位置指数(Topographic Position Index)。TPI 是描述地形起伏度和地形形态的一个重要指标,可以用于地貌分类、土壤侵蚀、植被分布等领域。 地形位置指数(Topographic Position Index,TPI)是用…...

树的基本操作(数据结构)

树的创建 //结构结点 typedef struct Node {int data;struct Node *leftchild;struct Node *rightchild; }*Bitree,BitNode;//初始化树 void Create(Bitree &T) {int d;printf("输入结点(按0为空结点):");scanf("%d",&d);if(d!0){T (Bitree)ma…...

Python复刻游戏《贪吃蛇大作战》

入门教程、案例源码、学习资料、读者群 请访问: python666.cn 大家好,欢迎来到 Crossin的编程教室 ! 曾经有一款小游戏刷屏微信朋友圈,叫做《贪吃蛇大作战》。一个简单到不行的游戏,也不知道怎么就火了,还上…...

SpringCloud之Gateway整合Sentinel服务降级和限流

1.下载Sentinel.jar可以图形界面配置限流和降级规则 地址:可能需要翻墙 下载jar文件 2.引入maven依赖 <!-- spring cloud gateway整合sentinel的依赖--><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-alibaba-s…...

深度学习——深度卷积神经网络(AlexNet)

深度学习——深度卷积神经网络&#xff08;AlexNet) 文章目录 前言一、学习表征二、AlexNet实现2.1. 模型设计2.2. 激活函数2.3. 容量控制与预处理2.4. 训练模型 总结 前言 在前面学习了卷积神经网络的基本原理&#xff0c;之后将继续学习现代卷积神经网络架构。而本章将学习其…...

提高编程效率-Vscode实用指南

您是否知道全球73%的开发人员依赖同一个代码编辑器&#xff1f; 是的&#xff0c;2023 年 Stack Overflow 开发者调查结果已出炉&#xff0c;Visual Studio Code 迄今为止再次排名第一最常用的开发环境。 “Visual Studio Code 仍然是所有开发人员的首选 IDE&#xff0c;与专业…...

ES 数据库

ES 数据库 通过 API 查询通过 JSON 查询 熟悉 es 的同学都知道 es 一般有两种查询方式 1&#xff0c;在 java 中构建查询对象&#xff0c;调用 es 提供的 api 做查询 2&#xff0c;使用 json 调用接口做查询 查询语句无非是将足够的信息丢给数据库&#xff0c;但是它却和 SQL …...

面试经典150题——Day14

文章目录 一、题目二、题解 一、题目 134. Gas Station There are n gas stations along a circular route, where the amount of gas at the ith station is gas[i]. You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from the ith stati…...

Pika v3.5.1发布!

Pika 社区很高兴宣布&#xff0c;我们今天发布已经过我们生产环境验证 v3.5.1 版本&#xff0c;https://github.com/OpenAtomFoundation/pika/releases/tag/v3.5.1 。 该版本不仅做了很多优化工作&#xff0c;还引入了多项新功能。这些新功能包括 动态关闭 WAL、ReplicationID…...

Kotlin中的数组

数组是一种常见的数据结构&#xff0c;用于存储相同类型的多个元素。在 Kotlin 中&#xff0c;我们可以使用不同的方式声明、初始化和操作数组。 在 Kotlin 中&#xff0c;有多种方式可以定义和操作数组。我们将通过以下示例代码来展示不同的数组操作&#xff1a; fun main()…...

(3) OpenCV图像处理kNN近邻算法-识别摄像头数字

目录 一、代码简介 二、程序代码 三、使用的图片资源 1、图片digits.png...

上海亚商投顾:沪指震荡调整 转基因概念股逆势大涨

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指昨日低开低走&#xff0c;深成指、创业板指均跌超1%&#xff0c;双双创出年内新低。转基因概念股逆势大涨…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...