当前位置: 首页 > news >正文

Pika v3.5.1发布!

Pika 社区很高兴宣布,我们今天发布已经过我们生产环境验证 v3.5.1 版本,https://github.com/OpenAtomFoundation/pika/releases/tag/v3.5.1 。

该版本不仅做了很多优化工作,还引入了多项新功能。这些新功能包括 动态关闭 WAL、ReplicationID 检测是否增量复制、在 K8s 环境上 Pika 服务的自动注册从而实现集群的自组织、以及 exporter 检测集群指标等等,无疑将会让用户享受到更为稳定和高效的 NoSQL 使用体验。

Pika v3.5.1发布!Pika v3.5.1发布!

1 新特性

  • 1 Slow log 增加队列等待时间统计,在队列阻塞的时候方便我们进行问题定位。PR 1997, 作者 wangshao1。
  • 2 主从复制使用 ReplicationID 判断是否进行增量同步,解决原主从同步方式切主后整个数据集会进行全量复制的问题,可以提升 Pika 性能。PR 1951, 作者 Mixficsol。
  • 3 WAL 以 'disablewal' 命令方式支持动态关闭,在写性能遇到瓶颈的时候,可以通过命令关闭 WAL  缓解写性能下降的问题,关闭 WAL 有机器宕机后丢失数据的风险,用户需要根据自己的使用习惯权衡。PR 2015,作者 Mixficsol。
  • 4 flush 线程数和 compaction 线程数合二为一,在 Compaction 性能瓶颈时,可以动态调整线程数,缓解 Comapction 损耗 Pika 性能的问题。PR 2014, 作者 Tianpingan。
  • 5 升级了 RocksDB 版本到 v8.3.3。PR 2000, 作者 dingxiaoshuai123。
  • 6 新增周期性打印工作队列的长度功能,在队列阻塞的时候可以快速定位问题。PR 1978, 作者 Tianpingan。
  • 7 新增利用一个 pika_exporter 监测整个集群的指标,实现一个 Pika Exporter 实例监控整个集群,解决了 3.5.0 版本一个 Pika Exporter  监测一个 Pika 实例消耗资源的问题。PR 1953, 作者 chenbt-hz。
  • 8 实现在  K8s  环境上  Pika  服务的自动注册,在启动时自动注册,从而实现集群的自组织 ,实现了通过命令拉起整个 Pika Cluster 集群。PR 1931, 作者 machinly。

2 bug 修复

  • 1 调整了 Rate_limit 参数,修复了压测时出现 RPS 为 0 的情况 。PR 2009, 作者 Mixficsol。
  • 2 修复了 INFODATA 命令中对于遍历数据文件时出现空路径的逻辑判断。PR 1996, 作者 Mixficsol。
  • 3 修复了 Codis 在线上出现大毛刺的问题。PR 2016, 作者 chejinge。
  • 4 修复了 macOS 环境下编译使用 tools 导致编译不过的问题 。PR 2011, 作者 A2ureStone。
  • 5 减少了 exporter 非必要日志的打印,降低 了资源利用率。PR 1945, 作者 Mixficsol。

3 使用建议

本次新增了几个配置参数,大家在使用过程中,需要根据使用情况按需调整:

  • 1 max-rsync-parallel-num:主从全量复制线程数,需要根据自己机器 CPU 核数和部署实例个数进行调整,建议最小设置为 2。
  • 2 rate-limiter-bandwidth: 限制 RocksDB 数据库读写速度,限制数据库在一定时间内可以读写的数据量,默认 2000MiB/s,需要根据自己的机器性能和部署实例做调整。
  • max-background-jobs: compaction 和 flushdb 线程数,要根据自己机器 CPU 核数和部署实例个数进行调整,建议最小设置为 4。
  • 3 throttle-bytes-per-second: 主从复制传输限速参数,默认为 200MiB/s,该参数可以根据机器网卡的配置及部署 pika 实例的个数进行调整。

相关文章:

Pika v3.5.1发布!

Pika 社区很高兴宣布,我们今天发布已经过我们生产环境验证 v3.5.1 版本,https://github.com/OpenAtomFoundation/pika/releases/tag/v3.5.1 。 该版本不仅做了很多优化工作,还引入了多项新功能。这些新功能包括 动态关闭 WAL、ReplicationID…...

Kotlin中的数组

数组是一种常见的数据结构,用于存储相同类型的多个元素。在 Kotlin 中,我们可以使用不同的方式声明、初始化和操作数组。 在 Kotlin 中,有多种方式可以定义和操作数组。我们将通过以下示例代码来展示不同的数组操作: fun main()…...

(3) OpenCV图像处理kNN近邻算法-识别摄像头数字

目录 一、代码简介 二、程序代码 三、使用的图片资源 1、图片digits.png...

上海亚商投顾:沪指震荡调整 转基因概念股逆势大涨

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 沪指昨日低开低走,深成指、创业板指均跌超1%,双双创出年内新低。转基因概念股逆势大涨…...

abap中程序跳转(全)

1.常用 1.CALL TRANSACTION 1.CALL TRANSACTION ta WITH|WITHOUT AUTHORITY-CHECK [AND SKIP FIRST SCREEN]. 其中ta为事务码tcode使用时要打单引号() 2. CALL TRANSACTION ta WITH|WITHOUT AUTHORITY-CHECK USING bdc_tab { {[MODE mode] [UPDATE u…...

启动速度提升 10 倍:Apache Dubbo 静态化方案深入解析

作者:华钟明 文章摘要: 本文整理自有赞中间件技术专家、Apache Dubbo PMC 华钟明的分享。本篇内容主要分为五个部分: -GraalVM 直面 Java 应用在云时代的挑战 -Dubbo 享受 AOT 带来的技术红利 -Dubbo Native Image 的实践和示例 -Dubbo…...

PCB命名规则-allegro

PCB命名规则-allegro 一、焊盘命名规则 1、 贴片矩形焊盘 命名规则:SMD长(L)宽(W)(mil) 举例:SMD90X60 2、 贴片圆焊盘 命名规则:SMDC焊盘直径(D&…...

[架构之路-240]:目标系统 - 纵向分层 - 应用层 - 应用层协议与业务应用程序的多样化,与大自然生物的丰富多彩,异曲同工

目录 前言: - 倒金子塔结构 - 大自然的组成 一、应用层在计算机系统中的位置 1.1 计算机应用程序的位置 1.1.1 业务应用程序概述 1.1.2 应用程序的分类 - 按照计算机作用范围 1.1.3 业务应用程序分类 - 按照行业分类 1.2 网络应用协议的位置 1.2.1 网络协…...

探索数字时代的核心:服务器如何塑造未来并助你成就大业

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...

spring6-资源操作:Resources

资源操作:Resources 1、Spring Resources概述2、Resource接口3、Resource的实现类3.1、UrlResource访问网络资源3.2、ClassPathResource 访问类路径下资源3.3、FileSystemResource 访问文件系统资源3.4、ServletContextResource3.5、InputStreamResource3.6、ByteAr…...

C语言 内存

内存分配 内存分配的类型 C/C中内存分为5个区,分别为栈区、堆区、全局/静态存储区、常量存储区、代码区 静态内存分配:编译时分配,包括全局、静态全局、静态局部三种变量。 动态内存分配:运行时分配,包括栈&#x…...

Java设计模式之备忘录模式

备忘录模式(Memento Pattern)是一种行为型设计模式,它允许在不暴露对象内部状态的情况下捕获和恢复对象的内部状态。该模式通过在对象之外保存和恢复对象的状态,使得对象可以在需要时回滚到之前的状态。 在备忘录模式中&#xff…...

深度学习 | Pytorch深度学习实践

一、overview 基于pytorch的深度学习的四个步骤基本如下: 二、线性模型 Linear Model 基本概念 数据集分为测试集和训练集(训练集、开发集)训练集(x,y)测试集只给(x)过拟合&#xf…...

Elasticsearch7.9.3保姆级安装教程

Linux版本Elasticsearch版本(待安装)Kibana版本(待安装)CentOS 77.9.37.9.3 一、下载地址 1、官网下载 打开地址 https://www.elastic.co/cn/downloads/past-releases#elasticsearch,按如图所示选择对应版本即可 2、采用wget下载 为了不必要的麻烦,建…...

深入使用探讨 PuppeteerSharp 抓取 LinkedIn 页面的步骤

LinkedIn是全球最大的职业社交平台之一,拥有大量的用户和企业信息。用户可以在上面建立个人职业资料、与其他用户建立联系、分享职业经验和获取行业动态。由于其庞大的用户群体和丰富的数据资源,开发者们对于获取LinkedIn数据的需求日益增长。 Puppeteer…...

联合体(共用体)

1. 联合类型的定义 联合也是一种特殊的自定义类型。 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间。 2.联合大小的计算 联合的大小 至少是最大成员的大小 。 当最大成员大小不是最大对齐数的整数倍的时候,就要对 齐到最大对齐数…...

从零开始:GitFlow详细教程,轻松掌握分支策略

前序 GitFlow是一种用于管理Git仓库中软件开发工作流程的模型,它提供了一种结构化的方法来处理特性开发、版本发布和维护。下面是一个详细的GitFlow教程,帮助你了解GitFlow的基本概念和使用方法。 安装GitFlow 首先,确保你已经安装了Git。…...

深度学习硬件介绍

目录 1. 深度学习电脑选型1.1 深度学习常用框架1.2 深度学习硬件选择1.3 GPU 厂商介绍科普 你真的需要这么一块阵列卡 1. 深度学习电脑选型 1.1 深度学习常用框架 常见的深度学习框架:百度的飞桨框架、Google 的TensorFlow,伯克利亚学院的Caffe&#x…...

利用向导创建MFC

目录 1、项目的创建: 2、项目的管理 : 3、分析以及生成的项目代码 : (1)、查看CFrame中的消息映射宏 (2)、自动生成事件 (3)、在CFrame中添加对应的鼠标处理函数 …...

MySQL 8.0 OCP认证精讲视频、环境和题库之五 事务、缓存

redo log buffer: 缓存与事务有关的redo log ,用来对mysql进行crash恢复,不可禁用; 日志缓冲区是存储要写入磁盘上日志文件的数据的内存区域。日志缓冲区大小由innodb_Log_buffer_size变量定义。 默认大小为16MB。日志缓冲区的内容会定…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Cursor实现用excel数据填充word模版的方法

cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

Map相关知识

数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...