当前位置: 首页 > news >正文

你知道 GO 中什么情况会变量逃逸吗?

你知道 GO 中什么情况会变量逃逸吗?首先我们先来看看什么是变量逃逸

Go 语言将这个以前我们写 C/C++ 时候需要做的内存规划和分配,全部整合到了 GO 的编译器中,GO 中将这个称为 变量逃逸

GO 通过编译器分析代码的特征和代码的生命周期,决定应该使用堆还是栈来进行内存分配

C 代码 和 GO 代码对比哪个会崩溃?

咱们写一个简单的例子,在 C 里面内存分配到栈上面还是堆上面是一个很明确的事情

例如

函数中的变量是分配在栈上面,会随着该函数调用完毕后随之销毁掉

程序员自己 malloc 开辟的内存是在堆上面,需要程序员自己去释放

那么问题来了:

如果我们将某一个函数中的局部变量的地址(全篇以局部变量为例),作为该函数的返回值,最终在函数外部去访问这个局部变量的地址,是否会出错呢?一起来看看吧

C 程序

test.c

int * get_res(int num){int tmp = num + 10;return &tmp;
}int main(){int * res = get_res(80);printf("%d  -- %p\n" , *res, res);
}

上面写了一个简单的 C 代码,获取传入数据并 + 10 得到的结果

# gcc test.c  -o test
test.c: In function ‘get_res’:
test.c:7:12: warning: function returns address of local variable [-Wreturn-local-addr]return &tmp;^~~~
# ./test
Segmentation fault

这里可以看出编译程序,报了 warning 了,不过不影响程序的编译 , 这个 warning 报错信息是 因为我们返回了临时变量的地址,C 编译器检测到了,给我们抛出了一个 warning

执行编译的程序后,崩溃了 , 熟悉 C 的小伙伴一点都不惊慌,他们不会写出这种代码

出现 段错误 的原因很明显,上面有说到,是因为外部访问了局部变量的地址,外部访问的时候,此时这个局部变量已经被销毁了,此时外部访问的这个指针,属于野指针,因此出现程序崩溃

GO 程序

go 程序的逻辑和上面 C 程序的逻辑一模一样,那么我们看看是否会出现程序崩溃呢

func getRes(num int) *int {tmp := num + 10return &tmp
}
func main() {res := getRes(80)fmt.Printf("%d  -- %p\n", *res, res)
}

执行上述代码,查看效果

# go run main.go
90  -- 0xc420018078

熟悉 go 语言的 小伙伴看到这里心中也毫无波澜,程序正常执行,没有崩溃,因为他们知道原因,这个现象属于 变量逃逸

那么我们一起来看看 GO 为什么会这样做,是如何做的呢?

GO 的逃逸是啥样子的?

上面有说到 GO 不会像 C/C++ 一样需要程序员自己去关心内存分配,是期望 GO 程序员更多的关注逻辑

因此内存分配这一块,GO 编译器都做的妥妥的,一个变量是分配在栈上面还是堆上面,不是简单的看一个变量是局部变量就分配到栈上,这个是根据具体的使用的,有时候它也会被分配到堆上面

当我们发现本应该分配在栈上面的变量,却分配在堆上面了,说明发生了逃逸

开始探究和验证

我们可以尝试写一个简单的 demo ,还是将局部变量的地址返回到外部去,外部来访问这个局部变量的地址

func getRes(tmp int) *int {var t1 int = 1var t2 int = 2var t3 int = 3println(&tmp, &t1, &t2, &t3)return &t2
}func main() {res := getRes(80)println(*res, res)
}

执行上述代码查看效果

# go run main.go
0xc420045f50 0xc420045f68 0xc420045f60 0xc420045f58
2 0xc420045f60

通过上面的将变量地址打印出来貌似没有看出上面端倪,地址是也是连续的

那么我们使用 go 提供的工具来看看这个程序是不是存在逃逸

执行 # go tool compile -m main.go 查看效果如下

main.go:11:9: &t2 escapes to heap
main.go:6:6: moved to heap: t2

go tool compile 工具很明显的调试出来说明 t2 这个变量已经逃逸到 堆上面去了

感兴趣的话还可以利用工具瞅一眼汇编,多了解一点也有好处

刚才参数 -m 是直接查看是否逃逸,我们可以加 -S 会打印出具体的会变代码,查看该变量是否是 new 出来的

# go tool compile -S main.go | grep new
0x0035 00053 (main.go:6)        CALL    runtime.newobject(SB)
rel 54+4 t=8 runtime.newobject+0

对应的看看代码,就是 创建 t2 变量的这一行

对于 go tool compile 工具,我们可以通过 help 命令来查看一下

# go tool compile --help

欢迎点赞,关注,收藏

朋友们,你的支持和鼓励,是我坚持分享,提高质量的动力

好了,本次就到这里

技术是开放的,我们的心态,更应是开放的。拥抱变化,向阳而生,努力向前行。

我是阿兵云原生,欢迎点赞关注收藏,下次见~

相关文章:

你知道 GO 中什么情况会变量逃逸吗?

你知道 GO 中什么情况会变量逃逸吗?首先我们先来看看什么是变量逃逸 Go 语言将这个以前我们写 C/C 时候需要做的内存规划和分配,全部整合到了 GO 的编译器中,GO 中将这个称为 变量逃逸 GO 通过编译器分析代码的特征和代码的生命周期&#x…...

一篇文章学懂C++和指针与链表

指针 目录 指针 C的指针学习 指针的基本概念 指针变量的定义和使用 指针的所占的内存空间 空指针和野指针 const修饰指针 指针和数组 指针和函数 指针、数组、函数 接下来让我们开始进入学习吧! C的指针学习 指针的基本概念 指针的作用:可…...

TPGS-cisplatin顺铂修饰维生素E聚乙二醇1000琥珀酸酯

TPGS-cisplatin顺铂修饰维生素E聚乙二醇1000琥珀酸酯(TPGS)溶于大部分有机溶剂,和水有很好的溶解性。 长期保存需要在-20℃,避光,干燥条件下存放,注意取用一定要干燥,避免频繁的溶解和冻干。 维生素E聚乙二醇琥珀酸酯(简称TPGS)是维生素E的水溶性衍生物,由维生素E…...

【20230206-0209】哈希表小结

哈希表一般哈希表都是用来快速判断一个元素是否出现在集合里。哈希函数哈希碰撞--解决方法:拉链法和线性探测法。拉链法:冲突的元素都被存储在链表中线性探测法:一定要保证tableSize大于dataSize,利用哈希表中的空位解决碰撞问题。…...

c++11 标准模板(STL)(std::multimap)(一)

定义于头文件 <map> template< class Key, class T, class Compare std::less<Key>, class Allocator std::allocator<std::pair<const Key, T> > > class multimap;(1)namespace pmr { template <class Key, class T…...

python进阶——自动驾驶寻找车道

大家好&#xff0c;我是csdn的博主&#xff1a;lqj_本人 这是我的个人博客主页&#xff1a; lqj_本人的博客_CSDN博客-微信小程序,前端,python领域博主lqj_本人擅长微信小程序,前端,python,等方面的知识https://blog.csdn.net/lbcyllqj?spm1011.2415.3001.5343哔哩哔哩欢迎关注…...

男,26岁,做了一年多的自动化测试,最近在纠结要不要转行,求指点。?

最近一个粉丝在后台问我&#xff0c;啊大佬我现在26了&#xff0c;做了做了一年多的自动化测试&#xff0c;最近在纠结要不要转行&#xff0c;求指点。首选做IT这条路&#xff0c;就是很普通的技术蓝领。对于大部分来说干一辈子问题不大&#xff0c;但是发不了什么财。如果你在…...

源码级别的讲解JAVA 中的CAS

没有CAS之前实现线程安全 多线程环境不使用原子类保证线程安全&#xff08;基本数据类型&#xff09; public class T3 {volatile int number 0;//读取public int getNumber(){return number;}//写入加锁保证原子性public synchronized void setNumber(){number;} }多线程环…...

JUC锁与AQS技术【我的Android开发技术】

JUC锁与AQS技术【我的Android开发技术】 AQS原理 AQS就是一个同步器&#xff0c;要做的事情就相当于一个锁&#xff0c;所以就会有两个动作&#xff1a;一个是获取&#xff0c;一个是释放。获取释放的时候该有一个东西来记住他是被用还是没被用&#xff0c;这个东西就是一个状…...

【问题代码】顺序点的深入理解(汇编剖析+手画图解)

这好像是一个哲学问题。 目录 前言 一、顺序点是什么&#xff1f; 二、发生有关顺序点的问题代码 vs中&#xff1a; gcc中&#xff1a; 三、细读汇编 1.vs汇编如下&#xff08;示例&#xff09;&#xff1a; 2.gcc汇编如下&#xff08;示例&#xff09;&#xff1a; 四…...

BinaryAI全新代码匹配模型BAI-2.0上线,“大模型”时代的安全实践

导语BinaryAI&#xff08;https://www.binaryai.net&#xff09;科恩实验室在2021年8月首次发布二进制安全智能分析平台—BinaryAI&#xff0c;BinaryAI可精准高效识别二进制文件的第三方组件及其版本号&#xff0c;旨在推动SCA&#xff08;Software Composition Analysis&…...

nvidia设置wifi和接口

tx-nx设置wifi和接口前言基础知识点1.创建和删除一个wifi连接2. 启动连接和关闭连接代码和调试1. 代码展示2. 调试写到最后前言 针对嵌入式开发&#xff0c;有时候通过QT或PAD跨网络对设备设置WIFI&#xff0c;在此记录下&#xff0c;方便后续的查阅。 基础知识点 1.创建和删…...

PostgreSQL 变化数据捕捉(CDC)

PostgreSQL 变化数据捕捉&#xff08;CDC&#xff09;基于CDC&#xff08;变更数据捕捉&#xff09;的增量数据集成总体步骤&#xff1a;1.捕获源数据库中的更改数据2.将变更的数据转换为您的消费者可以接受的格式3.将数据发布到消费者或目标数据库PostgreSQL支持触发器&#x…...

Spring 事务【隔离级别与传播机制】

Spring 事务【隔离级别与传播机制】&#x1f34e;一.事务隔离级别&#x1f352;1.1 事务特性回顾&#x1f352;1.2 事务的隔离级别(5种)&#x1f352;1.3 事务隔离级别的设置&#x1f34e;二.Spring 事务传播机制&#x1f352;2.1 Spring 事务传播机制的作用&#x1f352;2.2 事…...

HTTP和HTTPS协议

HTTP协议 HTTP协议是一种应用层的协议&#xff0c;全称为超文本传输协议。 URL URL值统一资源定位标志&#xff0c;也就是俗称的网址。 协议方案名 http://表示的就是协议方案名&#xff0c;常用的协议有HTTP协议、HTTPS协议、FTP协议等。HTTPS协议是以HTTP协议为基础&#…...

day3——有关java运算符的笔记

今天主要学习的内容有java的运算符 赋值运算符算数运算符关系运算符逻辑运算符位运算符&#xff08;专门写一篇笔记&#xff09;条件运算符运算符的优先级流程控制 赋值运算符 赋值运算符&#xff08;&#xff09;主要用于给变量赋值&#xff0c;可以跟算数运算符相结合&…...

Git多人协同远程开发

1. 李四&#xff08;项目负责人&#xff09;操作步骤 在github中创建远程版本库testgit将基础代码上传⾄testgit远程库远程库中基于main分⽀创建dev分⽀将 githubleaflife/testgit 共享给组员李四继续在基础代码上添加⾃⼰负责的模块内容 2. 张三、王五&#xff08;组员&…...

Chapter4:机器人仿真

ROS1{\rm ROS1}ROS1的基础及应用&#xff0c;基于古月的课&#xff0c;各位可以去看&#xff0c;基于hawkbot{\rm hawkbot}hawkbot机器人进行实际操作。 ROS{\rm ROS}ROS版本&#xff1a;ROS1{\rm ROS1}ROS1的Melodic{\rm Melodic}Melodic&#xff1b;实际机器人&#xff1a;Ha…...

python(14)--集合

前言 本篇文章学习的是 python 中集合的基础知识。 集合元素的内容是不可变的&#xff0c;常见的元素有整数、浮点数、字符串、元组等。至于可变内容列表、字典、集合等不可以是集合元素。虽然集合不可以是集合的元素&#xff0c;但是集合本身是可变的&#xff0c;可以去增加或…...

【Spark分布式内存计算框架——Spark Core】4. RDD函数(中)Transformation函数、Action函数

3.2 Transformation函数 在Spark中Transformation操作表示将一个RDD通过一系列操作变为另一个RDD的过程&#xff0c;这个操作可能是简单的加减操作&#xff0c;也可能是某个函数或某一系列函数。值得注意的是Transformation操作并不会触发真正的计算&#xff0c;只会建立RDD间…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...

Django RBAC项目后端实战 - 03 DRF权限控制实现

项目背景 在上一篇文章中&#xff0c;我们完成了JWT认证系统的集成。本篇文章将实现基于Redis的RBAC权限控制系统&#xff0c;为系统提供细粒度的权限控制。 开发目标 实现基于Redis的权限缓存机制开发DRF权限控制类实现权限管理API配置权限白名单 前置配置 在开始开发权限…...

【java】【服务器】线程上下文丢失 是指什么

目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失&#xff1f; 直观示例说明 为什么上下文如此重要&#xff1f; 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程&#xff0c;代码应该如何实现 推荐方案&#xff1a;使用 ManagedE…...

MeanFlow:何凯明新作,单步去噪图像生成新SOTA

1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架&#xff0c;旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念&#xff0c;这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换&#xff0c;显…...

C++ Saucer 编写Windows桌面应用

文章目录 一、背景二、Saucer 简介核心特性典型应用场景 三、生成自己的项目四、以Win32项目方式构建Win32项目禁用最大化按钮 五、总结 一、背景 使用Saucer框架&#xff0c;开发Windows桌面应用&#xff0c;把一个html页面作为GUI设计放到Saucer里&#xff0c;隐藏掉运行时弹…...