当前位置: 首页 > news >正文

【LeetCode】50. Pow(x, n)

1 问题

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即, x n x^n xn )。

示例 1:

输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:

输入:x = 2.10000, n = 3
输出:9.26100

示例 3:

输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

2 答案

自己写的超出时间限制

class Solution:def myPow(self, x: float, n: int) -> float:if n == 0:return 1res = 1for _ in range(abs(n)):res *= xreturn res if n > 0 else 1/res

官方解,利用二进制转十进制

class Solution:def myPow(self, x: float, n: int) -> float:if x == 0.0: return 0.0res = 1if n < 0:x, n = 1/x, -nwhile n:if n & 1:  # 按位与,即 n % 2 == 1res *= xx *= x  n >>= 1  # 即 n % 2 == 1return res 

对于任何十进制正整数 n n n,设其二进制为 b m . . . b 3 b 2 b 1 b^m...b^3b^2b^1 bm...b3b2b1 b i b^i bi为二进制某位值, i ∈ [ 1 , m ] i \in [1,m] i[1,m]),则有:

  • 二进制转十进制: n = 1 b 1 + 2 b 2 + 4 b 3 + … + 2 m − 1 b m n=1 b_1+2 b_2+4 b_3+\ldots+2^{m-1} b_m n=1b1+2b2+4b3++2m1bm (即二进制转十进制公式)
  • 幂的二进制展开: x n = x 1 b 1 + 2 b 2 + 4 b 3 + … + 2 m − 1 b m = x 1 b 1 x 2 b 2 x 4 b 3 … x 2 m − 1 b m x^n=x^{1 b_1+2 b_2+4 b_3+\ldots+2^{m-1} b_m}=x^{1 b_1} x^{2 b_2} x^{4 b_3} \ldots x^{2^{m-1} b_m} xn=x1b1+2b2+4b3++2m1bm=x1b1x2b2x4b3x2m1bm

相关文章:

【LeetCode】50. Pow(x, n)

1 问题 实现 pow(x, n) &#xff0c;即计算 x 的整数 n 次幂函数&#xff08;即&#xff0c; x n x^n xn &#xff09;。 示例 1&#xff1a; 输入&#xff1a;x 2.00000, n 10 输出&#xff1a;1024.00000 示例 2&#xff1a; 输入&#xff1a;x 2.10000, n 3 输出&a…...

vue2技能树(2)-模板语法、vue的工具链、渐进式框架

目录 Vue2技能树Vue 2 简单的模板语法详解插值绑定属性指令v-if 和 v-elsev-forv-on 计算属性过滤器插槽 Vue 2 生态系统详解1. Vue Router2. Vuex3. Vue CLI4. Axios5. Vue Devtools6. Element UI、Vuetify、Quasar等UI框架7. Nuxt.js8. Vue Apollo、Vue Router、Vue Fire等插…...

【Git系列教程-目录大纲】

《Git系列教程-目录大纲》 完完全全从零开始深入学习Git&#xff0c;教程配图200张&#xff0c;其中包括包括Git基本命令、命令原理、Git底层命令、分支、分支的原理、Git代码冲突原理/解决、tag标签、Git存储状态、分支合并原理、典型合并、快进合并、同轴开发、非同轴开发、…...

【高等数学】导数与微分

文章目录 1、导数的概念1.1、引例1.1.1、变速直线运动瞬时速度1.1.2、曲线的切线 1.2、导数的定义1.3、证明常用导数1.4、导数的几何意义1.5、可导与连续的关系 2、函数的求导法则2.1、函数的和、差、积、商的求导法则2.2、反函数的求导法则2.3、复合函数的求导法则2.4、基本初…...

springboot之quartz动态可控定时任务

Quartz Quartz是一个开源的任务调度框架&#xff0c;可以用来实现定时任务的调度&#xff0c;如定时发送邮件、定时备份数据等。Quartz具有很高的可靠性和灵活性&#xff0c;支持集群部署和分布式调度&#xff0c;并且提供了丰富的API和插件&#xff0c;可以轻松实现复杂的调度…...

什么是CSS的外边距重叠?

区块的上下外边距有时会合并&#xff08;折叠&#xff09;为单个边距&#xff0c;其大小为两个边距中的最大值&#xff08;或如果它们相等&#xff0c;则仅为其中一个&#xff09;&#xff0c;这种行为称为外边距折叠。注意&#xff1a;有设定浮动和绝对定位的元素不会发生外边…...

设计模式之抽象工厂模式

前言 工厂模式一般指的是简单工厂模式、工厂方法模式、抽象工厂模式&#xff0c;这是三种工厂模式的最后一篇&#xff0c;其他两种的文章链接如下&#xff1a; 设计模式之简单工厂模式-CSDN博客 设计模式之工厂方法模式-CSDN博客 建议三种模式放在一起对比学习&#xff0c;…...

Compose预处理组件大比拼:性能、应用场景和可视化对比总结

在机器学习的世界里,预处理组件就像是厨师的烹饪工具。选择合适的工具不仅可以让整个烹饪过程更加顺畅,还能确保最终的菜肴更加美味。 本文将深入探讨四种“烹饪工具”:TransformedTargetRegressor、make_column_transformer、make_column_selector和ColumnTransformer。通…...

【小米】Linux 实习生

下午不准备去图书馆自习来着&#xff0c;中午就狠狠地多睡了一个小时&#xff0c;三点起床靠在椅子上剥柚子&#xff0c;太爽了&#xff0c;这秋天的下午。“邮件&#xff1a;小米公司邀请你预约面试时间”.......... 我擦&#xff0c;投了一个月了&#xff0c;认真准备的时候…...

python一点通:coroutine (协程)是什么和重要知识点?

协程已经成为Python用于编写并发和异步代码的重要工具之一。在这篇博客文章中&#xff0c;我们将深入探讨协程是什么&#xff0c;它们的优点&#xff0c;以及它们与传统的线程和进程有何不同。 什么是协程&#xff1f; 协程是用于合作式多任务处理的子程序&#xff08;或函数…...

QCC51XX-QCC30XX系列开发教程(实战篇) 之 12.1-空间音频相关模块的概述

查看全部教程开发请点击:全网最全-QCC51xx-QCC30xx(TWS)系列从入门到精通开发教程汇总(持续更新中) ==================================================================== 版权归作者所有,未经允许,请勿转载。 ==========================================...

Servlet的生命周期

2023.10.18 WEB容器创建的Servlet对象&#xff0c;这些Servlet对象都会被放到一个集合当中&#xff08;HashMap&#xff09;&#xff0c;这个集合当中存储了Servlet对象和请求路径之间的关系 。只有放到这个HashMap集合中的Servlet才能够被WEB容器管理&#xff0c;自己new的Ser…...

2.4 如何在FlinkSQL使用DataGen(数据生成器)

1、DataGen SQL 连接器 FLinkSQL中可以使用内置的DataGen SQL 连接器来生成测试数据 官网链接&#xff1a;DataGen SQL 连接器 2、随机数数据生成器 随机数数据生成器支持随机生成 char、varchar、binary、varbinary、string 类型的数据 它是一个无界流的数据生成器 -- TO…...

Gin + Ant Design Pro JWT认证

文章目录 一&#xff1a;介绍二&#xff1a;Gin JWT 后台1. Claims 定义2. 创建和解析Token3. Gin中间件编写4. 辅助函数 三&#xff1a;Ant Design Pro JWT认证四&#xff1a;Gin中间件和使用示范 一&#xff1a;介绍 JWT现在比较流行的认证方式&#xff0c;微服务中使用特别…...

canvas实现图片标注,绘制区域

使用canvas绘制通过多边形标注区域 AI视频项目中需要分析图片&#xff0c;需要前台绘制区域&#xff0c;后端获取坐标然后识别图像&#xff0c;通过canvas 获取点然后连线绘图 HEML代码段 <div class"areaDrawing"><img src"/assets/images/snapPhotos…...

SELECT COUNT(*) 会造成全表扫描吗?

前言 SELECT COUNT(*)会不会导致全表扫描引起慢查询呢&#xff1f; SELECT COUNT(*) FROM SomeTable 网上有一种说法&#xff0c;针对无 where_clause 的 COUNT(*)&#xff0c;MySQL 是有优化的&#xff0c;优化器会选择成本最小的辅助索引查询计数&#xff0c;其实反而性能…...

python考前复习(90题)

文章目录 1.Python特性的是( )。 A. 面向对象 B. 高可移植性 C. 开源、免费 2.临时改变Python语言安装源应当使用的选项是 –index-url 3.Python脚本文件的扩展名为( ) .py 4.安装Python语言的软件包使用的命令是&#xff08; &#xff09; pip install 5 . (单选题)以下哪项是…...

根据SpringBoot Guides完成进行示例学习(详细步骤)

目录 1.打开Spring | Guides官网&#xff0c;或者直接搜索springboot都可 2.选择要学习的内容 3.根据提示的网址&#xff0c;Git到本地 4.将文件用IDEA打开&#xff0c;根据教程完成示例&#xff0c;这里不做细致讲解 5.运行项目 6.在终端查看运行结果 以Scheduling Task…...

waf、yakit和ssh免密登录

WAF安全狗 脏数据适用于所有漏洞绕过waf&#xff0c;但是前提条件垃圾信息必须放在危险信息前&#xff0c;是不能打断原有数据包的结构&#xff0c;不能影响后端对数据包的解析。 以DVWA靶场文件上传为例 新建php文件 上传文件被安全狗拦截 使用bp抓包查看 在数据包Content-…...

【AIGC核心技术剖析】大型语言和视觉助手——LLaVA(论文+源码)

🔥 [新!LLaVA-1.5 在 11 个基准测试上实现了 SoTA,只需对原始 LLaVA 进行简单的修改,利用所有公共数据,在单个 1-A8 节点上在 ~100 天内完成训练,并超越使用数十亿级数据的方法。 LLaVA代表了一种新颖的端到端训练大型多模态模型,结合了视觉编码器和骆马 对于通用的视…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

网页端 js 读取发票里的二维码信息(图片和PDF格式)

起因 为了实现在报销流程中&#xff0c;发票不能重用的限制&#xff0c;发票上传后&#xff0c;希望能读出发票号&#xff0c;并记录发票号已用&#xff0c;下次不再可用于报销。 基于上面的需求&#xff0c;研究了OCR 的方式和读PDF的方式&#xff0c;实际是可行的&#xff…...

Element-Plus:popconfirm与tooltip一起使用不生效?

你们好&#xff0c;我是金金金。 场景 我正在使用Element-plus组件库当中的el-popconfirm和el-tooltip&#xff0c;产品要求是两个需要结合一起使用&#xff0c;也就是鼠标悬浮上去有提示文字&#xff0c;并且点击之后需要出现气泡确认框 代码 <el-popconfirm title"是…...

Java设计模式:责任链模式

一、什么是责任链模式&#xff1f; 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09; 是一种 行为型设计模式&#xff0c;它通过将请求沿着一条处理链传递&#xff0c;直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者&#xff0c;…...

性能优化中,多面体模型基本原理

1&#xff09;多面体编译技术是一种基于多面体模型的程序分析和优化技术&#xff0c;它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象&#xff0c;通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中&#xff0…...