当前位置: 首页 > news >正文

【LeetCode】50. Pow(x, n)

1 问题

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即, x n x^n xn )。

示例 1:

输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:

输入:x = 2.10000, n = 3
输出:9.26100

示例 3:

输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

2 答案

自己写的超出时间限制

class Solution:def myPow(self, x: float, n: int) -> float:if n == 0:return 1res = 1for _ in range(abs(n)):res *= xreturn res if n > 0 else 1/res

官方解,利用二进制转十进制

class Solution:def myPow(self, x: float, n: int) -> float:if x == 0.0: return 0.0res = 1if n < 0:x, n = 1/x, -nwhile n:if n & 1:  # 按位与,即 n % 2 == 1res *= xx *= x  n >>= 1  # 即 n % 2 == 1return res 

对于任何十进制正整数 n n n,设其二进制为 b m . . . b 3 b 2 b 1 b^m...b^3b^2b^1 bm...b3b2b1 b i b^i bi为二进制某位值, i ∈ [ 1 , m ] i \in [1,m] i[1,m]),则有:

  • 二进制转十进制: n = 1 b 1 + 2 b 2 + 4 b 3 + … + 2 m − 1 b m n=1 b_1+2 b_2+4 b_3+\ldots+2^{m-1} b_m n=1b1+2b2+4b3++2m1bm (即二进制转十进制公式)
  • 幂的二进制展开: x n = x 1 b 1 + 2 b 2 + 4 b 3 + … + 2 m − 1 b m = x 1 b 1 x 2 b 2 x 4 b 3 … x 2 m − 1 b m x^n=x^{1 b_1+2 b_2+4 b_3+\ldots+2^{m-1} b_m}=x^{1 b_1} x^{2 b_2} x^{4 b_3} \ldots x^{2^{m-1} b_m} xn=x1b1+2b2+4b3++2m1bm=x1b1x2b2x4b3x2m1bm

相关文章:

【LeetCode】50. Pow(x, n)

1 问题 实现 pow(x, n) &#xff0c;即计算 x 的整数 n 次幂函数&#xff08;即&#xff0c; x n x^n xn &#xff09;。 示例 1&#xff1a; 输入&#xff1a;x 2.00000, n 10 输出&#xff1a;1024.00000 示例 2&#xff1a; 输入&#xff1a;x 2.10000, n 3 输出&a…...

vue2技能树(2)-模板语法、vue的工具链、渐进式框架

目录 Vue2技能树Vue 2 简单的模板语法详解插值绑定属性指令v-if 和 v-elsev-forv-on 计算属性过滤器插槽 Vue 2 生态系统详解1. Vue Router2. Vuex3. Vue CLI4. Axios5. Vue Devtools6. Element UI、Vuetify、Quasar等UI框架7. Nuxt.js8. Vue Apollo、Vue Router、Vue Fire等插…...

【Git系列教程-目录大纲】

《Git系列教程-目录大纲》 完完全全从零开始深入学习Git&#xff0c;教程配图200张&#xff0c;其中包括包括Git基本命令、命令原理、Git底层命令、分支、分支的原理、Git代码冲突原理/解决、tag标签、Git存储状态、分支合并原理、典型合并、快进合并、同轴开发、非同轴开发、…...

【高等数学】导数与微分

文章目录 1、导数的概念1.1、引例1.1.1、变速直线运动瞬时速度1.1.2、曲线的切线 1.2、导数的定义1.3、证明常用导数1.4、导数的几何意义1.5、可导与连续的关系 2、函数的求导法则2.1、函数的和、差、积、商的求导法则2.2、反函数的求导法则2.3、复合函数的求导法则2.4、基本初…...

springboot之quartz动态可控定时任务

Quartz Quartz是一个开源的任务调度框架&#xff0c;可以用来实现定时任务的调度&#xff0c;如定时发送邮件、定时备份数据等。Quartz具有很高的可靠性和灵活性&#xff0c;支持集群部署和分布式调度&#xff0c;并且提供了丰富的API和插件&#xff0c;可以轻松实现复杂的调度…...

什么是CSS的外边距重叠?

区块的上下外边距有时会合并&#xff08;折叠&#xff09;为单个边距&#xff0c;其大小为两个边距中的最大值&#xff08;或如果它们相等&#xff0c;则仅为其中一个&#xff09;&#xff0c;这种行为称为外边距折叠。注意&#xff1a;有设定浮动和绝对定位的元素不会发生外边…...

设计模式之抽象工厂模式

前言 工厂模式一般指的是简单工厂模式、工厂方法模式、抽象工厂模式&#xff0c;这是三种工厂模式的最后一篇&#xff0c;其他两种的文章链接如下&#xff1a; 设计模式之简单工厂模式-CSDN博客 设计模式之工厂方法模式-CSDN博客 建议三种模式放在一起对比学习&#xff0c;…...

Compose预处理组件大比拼:性能、应用场景和可视化对比总结

在机器学习的世界里,预处理组件就像是厨师的烹饪工具。选择合适的工具不仅可以让整个烹饪过程更加顺畅,还能确保最终的菜肴更加美味。 本文将深入探讨四种“烹饪工具”:TransformedTargetRegressor、make_column_transformer、make_column_selector和ColumnTransformer。通…...

【小米】Linux 实习生

下午不准备去图书馆自习来着&#xff0c;中午就狠狠地多睡了一个小时&#xff0c;三点起床靠在椅子上剥柚子&#xff0c;太爽了&#xff0c;这秋天的下午。“邮件&#xff1a;小米公司邀请你预约面试时间”.......... 我擦&#xff0c;投了一个月了&#xff0c;认真准备的时候…...

python一点通:coroutine (协程)是什么和重要知识点?

协程已经成为Python用于编写并发和异步代码的重要工具之一。在这篇博客文章中&#xff0c;我们将深入探讨协程是什么&#xff0c;它们的优点&#xff0c;以及它们与传统的线程和进程有何不同。 什么是协程&#xff1f; 协程是用于合作式多任务处理的子程序&#xff08;或函数…...

QCC51XX-QCC30XX系列开发教程(实战篇) 之 12.1-空间音频相关模块的概述

查看全部教程开发请点击:全网最全-QCC51xx-QCC30xx(TWS)系列从入门到精通开发教程汇总(持续更新中) ==================================================================== 版权归作者所有,未经允许,请勿转载。 ==========================================...

Servlet的生命周期

2023.10.18 WEB容器创建的Servlet对象&#xff0c;这些Servlet对象都会被放到一个集合当中&#xff08;HashMap&#xff09;&#xff0c;这个集合当中存储了Servlet对象和请求路径之间的关系 。只有放到这个HashMap集合中的Servlet才能够被WEB容器管理&#xff0c;自己new的Ser…...

2.4 如何在FlinkSQL使用DataGen(数据生成器)

1、DataGen SQL 连接器 FLinkSQL中可以使用内置的DataGen SQL 连接器来生成测试数据 官网链接&#xff1a;DataGen SQL 连接器 2、随机数数据生成器 随机数数据生成器支持随机生成 char、varchar、binary、varbinary、string 类型的数据 它是一个无界流的数据生成器 -- TO…...

Gin + Ant Design Pro JWT认证

文章目录 一&#xff1a;介绍二&#xff1a;Gin JWT 后台1. Claims 定义2. 创建和解析Token3. Gin中间件编写4. 辅助函数 三&#xff1a;Ant Design Pro JWT认证四&#xff1a;Gin中间件和使用示范 一&#xff1a;介绍 JWT现在比较流行的认证方式&#xff0c;微服务中使用特别…...

canvas实现图片标注,绘制区域

使用canvas绘制通过多边形标注区域 AI视频项目中需要分析图片&#xff0c;需要前台绘制区域&#xff0c;后端获取坐标然后识别图像&#xff0c;通过canvas 获取点然后连线绘图 HEML代码段 <div class"areaDrawing"><img src"/assets/images/snapPhotos…...

SELECT COUNT(*) 会造成全表扫描吗?

前言 SELECT COUNT(*)会不会导致全表扫描引起慢查询呢&#xff1f; SELECT COUNT(*) FROM SomeTable 网上有一种说法&#xff0c;针对无 where_clause 的 COUNT(*)&#xff0c;MySQL 是有优化的&#xff0c;优化器会选择成本最小的辅助索引查询计数&#xff0c;其实反而性能…...

python考前复习(90题)

文章目录 1.Python特性的是( )。 A. 面向对象 B. 高可移植性 C. 开源、免费 2.临时改变Python语言安装源应当使用的选项是 –index-url 3.Python脚本文件的扩展名为( ) .py 4.安装Python语言的软件包使用的命令是&#xff08; &#xff09; pip install 5 . (单选题)以下哪项是…...

根据SpringBoot Guides完成进行示例学习(详细步骤)

目录 1.打开Spring | Guides官网&#xff0c;或者直接搜索springboot都可 2.选择要学习的内容 3.根据提示的网址&#xff0c;Git到本地 4.将文件用IDEA打开&#xff0c;根据教程完成示例&#xff0c;这里不做细致讲解 5.运行项目 6.在终端查看运行结果 以Scheduling Task…...

waf、yakit和ssh免密登录

WAF安全狗 脏数据适用于所有漏洞绕过waf&#xff0c;但是前提条件垃圾信息必须放在危险信息前&#xff0c;是不能打断原有数据包的结构&#xff0c;不能影响后端对数据包的解析。 以DVWA靶场文件上传为例 新建php文件 上传文件被安全狗拦截 使用bp抓包查看 在数据包Content-…...

【AIGC核心技术剖析】大型语言和视觉助手——LLaVA(论文+源码)

🔥 [新!LLaVA-1.5 在 11 个基准测试上实现了 SoTA,只需对原始 LLaVA 进行简单的修改,利用所有公共数据,在单个 1-A8 节点上在 ~100 天内完成训练,并超越使用数十亿级数据的方法。 LLaVA代表了一种新颖的端到端训练大型多模态模型,结合了视觉编码器和骆马 对于通用的视…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...