C++ vector类模拟实现
目录
一、成员变量
二、构造函数
1.默认构造
2.拷贝构造
3.迭代器构造
4.使用n个值构造
5.赋值拷贝
三、析构函数
四、vector重要成员函数
1.size和capacity函数
2.reserve函数
3.resize函数
4.push_back函数
5.insert函数
6.erase函数
7.重载operator[]
一、成员变量
STL库里面,vector的成员变量和string有一些不一样,他的成员变量是用了迭代器
_start是数组起始位置
_finish是数据内容结束位置的下一个
_endofstorage是开辟的空间结束位置的下一个。
那么vector的迭代器是又是什么呢?
vector使用了模版,他可以适配各种类型,他的迭代器就是这个模板类型的指针。
因为vector和string一样,本质上就是数组,开辟的空间在内存上是连续的,因此使用指针当迭代器是在合理不过了。
二、构造函数
我们模仿一下STL里面的vector,没有使用适配器。
1.默认构造
vector的默认构造很简单,直接写上就好,内容都可以不需要,因为我们在成员变量哪里给到了初始值,他会在初始化列表中自动调用,因此这里可以不需要写初始化列表。
那么我们可以不可以不要下面这局代码呢?
答案是不可以的,因为我们后续还会写上其他的构造函数,那么编译器就不会提供默认生成的构造函数了。那这样我们普通的一个代码 vector<int> v 就会报错
vector()
{}
2.拷贝构造
拷贝构造调用了push_back函数,先开辟好空间,防止后续再扩容,后续尾插即可。
vector(const vector<T>& v)
{reserve(v.capacity());for (auto& e : v){push_back(e);}
}
3.迭代器构造
这里使用了模板来处理,因为我们不仅仅想使用vector迭代器去构造类对象,我们还想使用其他类对象的迭代器去构造。也是利用尾插即可。
template <class InputIterator>
vector(InputIterator first, InputIterator last)
{while (first != last){push_back(*first);first++;}
}
4.使用n个值构造
开辟n个空间,并全部赋值为给到的val参数。
vector(int n, const T& val = T())
{resize(n, val);
}vector(size_t n, const T& val = T())
{resize(n,val);
}
这里为什么我们要重载呢,一个写出int类型,一个写成size_t类型?
我们先不写上面的int重载,下面这句代码,使用n个val进行拷贝,竟然报错了,为啥会这样?
48行有问题,我们发现,明明我想调用的是58行的拷贝构造,为啥会到模板那里去?
是因为此时所传的 10 和 1 都是int类型,而下面那个是 size_t和 int 两个类型,编译器认为你要用这个模板来初始化,因此会调用生成 InputIterator为int的函数,int类型去解引用,那可不就报错了嘛,为了让编译器认识两个整形,我们就重载了vector,使他能够知道我们的意思。
5.赋值拷贝
利用了很现代的写法,参数我们不传&,就会拷贝构造一个临时对象,这个临时对象刚好是我this需要的内容,我直接和你swap一下,你身上就有了我不要的内容了,同时出了作用域你会析构,我会引用返回,就完成了赋值拷贝。
vector<T>& operator=(vector<T> v)
{swap(_start,v._start);swap(_finish, v._finish);swap(_endofstorage, v._endofstorage);return *this;
}
三、析构函数
easy,直接delete[] ,顺便置空即可。
~vector()
{delete[] _start;_start = _finish = _endofstorage = nullptr;
}
四、vector重要成员函数
1.size和capacity函数
由于我们成员变量都是迭代器(实现方式为指针),因此size()的大小和capacity()都可以用迭代器相减的方式得到。
size_t size() const
{return _finish - _start;
}
size_t capacity() const
{return _endofstorage - _start;
}
2.reserve函数
reserve可以开辟空间,n比现在的空间大才开辟,比现在的空间小则不管,不会删除数据。
如果需要开辟空间,则会先new出新的空间,把原有的数据数据拷贝到这个空间里,再删除原有的数据,同时对成员变量进行修改。
注意我们在拷贝的时候不能使用memcpy,因为用memcpy拷贝,如果类型为自定义类型,就仅仅是浅拷贝,浅拷贝会在开辟新空间的时候进行delete,一旦delete,新空间也被delete了。
这里我们选择了使用循环赋值,因为自定义类型会调用他的赋值拷贝,而他的赋值拷贝一般是深拷贝(只要写了的话),因此我们再扩容的时候就不会因为delete而发生错误了。
void reserve(size_t n)
{if (n > capacity()){size_t sz = size();T* tmp = new T[n];if (_start){//memcpy对自定义类型是浅拷贝//memcpy(tmp, _start, sz * sizeof(T));//循环赋值,会调用自定义类型的赋值拷贝,就是深拷贝for (size_t i = 0; i < sz; i++){tmp[i] = _start[i];}delete[] _start;}_start = tmp;_finish = _start + sz;_endofstorage = _start + n;}
}
3.resize函数
resize会改变vector的size()。
如果传的n要比size()小,那么就变成这个长度。
如果n比size()大,就要先看扩不扩容,但是无论扩不扩容,我们都可以直接调用reserve函数,需要扩你就扩,不需要也没啥影响,后面在将你传过来的值,赋值给还未初始化的空间。
注意在C++中一切类型都算对象,包括内置类型,因此我们传参给到的默认参数为T() 就像一个类的默认构造一样。
void resize(size_t n,const T& val = T())
{if (n <= size()){_finish = _start + n;}else{reserve(n);for (size_t i = size(); i < n; i++){_start[i] = val;}_finish = _start + n;}
}
4.push_back函数
push_back函数先判断空间满了没有,满了就去扩容,空间capacity()为0就给4,不为0就给2倍。
然后再*_finish这里赋值,_finish++即可。
void push_back(const T& x)
{if (size() == capacity()){size_t cp = capacity() == 0 ? 4 : capacity() * 2;reserve(cp);}*_finish = x;_finish++;
}
5.insert函数
insert函数传的参数不是索引,而是迭代器!!!
只要有插入,我们都得判断是否扩容,由于这里传递的是迭代器(vector中是指针),扩容有可能是异地扩容,因此地址会发生改变,我们扩容前先记录一下pos相对于_start的位置,扩容后再加上这个位置赋值给pos才对。
后续就是挪动数据,挪动完赋值,_finish++,最后要返回pos(可以防止迭代器失效)。
iterator insert(iterator pos,const T& x)
{assert(pos >= _start);assert(pos <= _finish);if (size() == capacity()){size_t len = pos - _start; //扩容后_start位置可能会发生改变了,因此要记录pos的相对位置,改变pos的值size_t cp = capacity() == 0 ? 4 : capacity() * 2;reserve(cp);pos = _start+len;}iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;end--;}*pos = x;_finish++;return pos;
}
6.erase函数
erase比insert还要简单一点,也是挪动数据,方向不一样,insert是从后往前数据往后挪动,erase是从当前位置往后向前挪动数据。再_finish--,最后返回pos(这也是为了防止迭代器失效)。
iterator erase(iterator pos)
{assert(pos >= _start);assert(pos < _finish);iterator it = pos;while (it < _finish - 1){*it = *(it +1);++it;}_finish--;return pos;
}
7.重载operator[]
分为普通版本和const版本,普通可读可写,const只能读。
T& operator[](size_t pos)
{assert(pos < size());return _start[pos];
}
//不可修改
const T& operator[](size_t pos) const
{assert(pos < size());return _start[pos];
}
最后附上总代码
vector.h
#pragma once
namespace kky
{template<class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin() const{return _start;}const_iterator end() const{return _finish;}vector(){}vector(const vector<T>& v){reserve(v.capacity());for (auto& e : v){push_back(e);}}template <class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);first++;}}vector(int n, const T& val = T()){resize(n, val);}//vector(size_t n, const T& val = T())//{// resize(n,val);//}vector<T>& operator=(vector<T> v){swap(_start,v._start);swap(_finish, v._finish);swap(_endofstorage, v._endofstorage);return *this;}~vector(){delete[] _start;_start = _finish = _endofstorage = nullptr;}size_t size() const{return _finish - _start;}size_t capacity() const{return _endofstorage - _start;}void reserve(size_t n){if (n > capacity()){size_t sz = size();T* tmp = new T[n];if (_start){//memcpy对自定义类型是浅拷贝//memcpy(tmp, _start, sz * sizeof(T));//循环赋值,会调用自定义类型的赋值拷贝,就是深拷贝for (size_t i = 0; i < sz; i++){tmp[i] = _start[i];}delete[] _start;}_start = tmp;_finish = _start + sz;_endofstorage = _start + n;}}void resize(size_t n,const T& val = T()){if (n <= size()){_finish = _start + n;}else{reserve(n);for (size_t i = size(); i < n; i++){_start[i] = val;}_finish = _start + n;}}void push_back(const T& x){if (size() == capacity()){size_t cp = capacity() == 0 ? 4 : capacity() * 2;reserve(cp);}*_finish = x;_finish++;}iterator insert(iterator pos,const T& x){assert(pos >= _start);assert(pos <= _finish);if (size() == capacity()){size_t len = pos - _start; //扩容后_start位置可能会发生改变了,因此要记录pos的相对位置,改变pos的值size_t cp = capacity() == 0 ? 4 : capacity() * 2;reserve(cp);pos = _start+len;}iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;end--;}*pos = x;_finish++;return pos;}iterator erase(iterator pos){assert(pos >= _start);assert(pos < _finish);iterator it = pos;while (it < _finish - 1){*it = *(it +1);++it;}_finish--;return pos;}T& operator[](size_t pos){assert(pos < size());return _start[pos];}//不可修改const T& operator[](size_t pos) const{assert(pos < size());return _start[pos]; }private:iterator _start = nullptr;iterator _finish = nullptr;iterator _endofstorage = nullptr;};void test01(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);for (size_t i = 0; i < v.size(); i++){cout << v[i] << " ";}cout << endl;for (auto e : v){cout << e << " ";}}void test02(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);v.resize(10, 6);for (auto e : v){cout << e << " ";}cout << endl;v.insert(v.begin(), 30);for (auto e : v){cout << e << " ";}cout << endl;}void test03(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);for (auto e : v){cout << e << " ";}cout << endl;v.erase(v.begin());for (auto e : v){cout << e << " ";}cout << endl;v.erase(v.begin()+2);for (auto e : v){cout << e << " ";}}void test04(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);v.push_back(6);vector<int>::iterator it = v.begin();while (it != v.end()){if (*it % 2 == 0){it = v.erase(it);}else{it++;}}for (auto e : v){cout << e << " ";}}void test05(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);v.push_back(6);vector<int> v2(v);for (auto e : v){cout << e << " ";}cout << endl;for (auto e : v2){cout << e << " ";}cout << endl;vector<int> v3;v3.push_back(1);v3 = v;for (auto e : v3){cout << e << " ";}}void test06(){vector<int> v(10, 1);for (auto e : v){cout << e << " ";}cout << endl;std::string s("123456");vector<int> v1(s.begin(), s.end());for (auto e : v1){cout << e << " ";}cout << endl;}void test07(){vector<int>v1(10, 1);vector<int>v2(10, 2);v1 = v2;for (auto e : v1){cout << e << " ";}cout << endl;}
}
test.cpp
#include <iostream>
using namespace std;
#include<cassert>
#include"vector.h"
int main()
{kky::test07();}
相关文章:

C++ vector类模拟实现
目录 一、成员变量 二、构造函数 1.默认构造 2.拷贝构造 3.迭代器构造 4.使用n个值构造 5.赋值拷贝 三、析构函数 四、vector重要成员函数 1.size和capacity函数 2.reserve函数 3.resize函数 4.push_back函数 5.insert函数 6.erase函数 7.重载operator[] 一、成…...
FastAPI+Pydantic使用自定义参数校验+自定义异常+全局异常捕获
目录 1 自定义参数校验异常 2 自定义的curr_page_v参数校验函数,如果不合法抛出自定义异常! 3 配置全局异常 1 自定义参数校验异常 # 1.用户自定义异常类型,只要该类继承了Exception类即可 class ValDtoError(Exception):# 初始化def __in…...

Python综合练习题
题目 创建一个系统,里面可以添加学生、添加班级、查看班级里的学生,在控制台输出 效果图 关键代码 完整代码 # -*- coding: UTF-8 -*-#功能 Functionality0 #学生 Student [刘榕榕0, 秦英姿1, 王家乐0, 孟德赫3, 门子伟4, 明展宇5] #班级 Class [大…...

SpringCloud+Nacos集成Seata-1.7.0分布式事务
前言 项目中需要A服务调用B服务,当A服务方法体内出现异常时,若B服务方法已执行,要求B服务能够进行回滚,需要借助分布式事务实现。Seata是一个比较成熟的分布式事务工具,但官方文档比较简洁,查阅网上资料也…...

任务调度框架-如何实现定时任务+RabbitMQ事务+手动ACK
任务调度框架 Java中如何实现定时任务? 比如: 1.每天早上6点定时执行 2.每月最后一个工作日,考勤统计 3.每个月25号信用卡还款 4.会员生日祝福 5.每隔3秒,自动提醒 10分钟的超时订单的自动取消,每隔30秒或1分钟查询…...

修炼k8s+flink+hdfs+dlink(六:学习k8s)
一:增(创建)。 直接进行创建。 kubectl run nginx --imagenginx使用yaml清单方式进行创建。 二:删除。 kubectl delete pods/nginx 三:修改。 kubectl exec -it my-nginx – /bin/bash 四:查看。 …...

红队专题-从零开始VC++C/S远程控制软件RAT-MFC-[4]客户端与服务端连接
红队专题 招募六边形战士队员服务端编写新建工程server函数创建主线程类获取配置信息运行command 命令头文件里创建引用win32 类库/头文件startsocket 开始监听 类函数添加类StartSocketmysend/myrecv 设置 m_sockCommon 头文件MSGINFO_S 结构体 ThreadMain头文件runflag 启动 …...
Qt Designer生成ui文件,如何转py文件,如何运行
下面将逐步介绍ui文件如何转py文件,怎么运行的具体操作步骤 ui文件转py文件 1.使用Qt Designer生成ui文件,保存到本地 2.输入 cmd ,打开命令行窗口 3.进入ui文件的目录下,文件路径使用你本地存放ui文件的位置 cd /d ui文件路径…...

Python数据挖掘:自动售货机销售数据分析与应用
📕作者简介:热爱跑步的恒川,致力于C/C、Java、Python等多编程语言,热爱跑步,喜爱音乐的一位博主。 📗本文收录于恒川的日常汇报系列,大家有兴趣的可以看一看 📘相关专栏C语言初阶、C…...

【设计模式】设计模式概述
😀大家好,我是白晨,一个不是很能熬夜😫,但是也想日更的人✈。如果喜欢这篇文章,点个赞👍,关注一下👀白晨吧!你的支持就是我最大的动力!Ǵ…...

第六届“中国法研杯”司法人工智能挑战赛进行中!
第六届“中国法研杯”司法人工智能挑战赛 赛题上新! 第六届“中国法研杯”司法人工智能挑战赛(LAIC2023)目前已发布司法大模型数据和服务集成调度 、证据推理、司法大数据征文比赛、案件要素识别四大任务。本届大赛中,“案件要素…...

关于 passing ‘const xx’ as ‘this’ argument of 的错误
今天在写一个简单的函数时,编译时出现了如下的错误: 这个很简单的函数是这样的: struct bundle_set {uint32_t baseId;uint32_t endId;bool operator< (const bundle_set &a){return baseId < a.baseId;} }; 在网上搜索到都是说什…...

数据结构和算法(13):优先级队列
概述 按照事先约定的优先级,可以始终高效查找并访问优先级最高数据项的数据结构,也统称作优先级队列 优先级队列将操作对象限定于当前的全局极值者。 根据数据对象之间相对优先级对其进行访问的方式,与此前的访问方式有着本质区别…...
面试经典150题——Day15
文章目录 一、题目二、题解 一、题目 135. Candy There are n children standing in a line. Each child is assigned a rating value given in the integer array ratings. You are giving candies to these children subjected to the following requirements: Each chil…...

web APIs——第一天(上)
变量声明的时候建议 const优先,尽量使用const 原因: const语义化更好很多变量我们声明的时候就知道他不会被更改了,那为什么不用const呢?实际开发中也是,比如react框架,基本const如果你有纠结的时候&…...
【Leetcode】215. 数组中的第K个最大元素
一、题目 1、题目描述 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例1: 输入: [3,2,1,5,6,4], k = 2 输出…...

服务器数据恢复-RAID5常见故障的数据恢复方案
raid5阵列常见故障: 1、服务器硬件故障或者RAID阵列卡故障; 2、服务器意外断电导致的磁盘阵列故障; 3、服务器RAID阵列阵列磁盘出现物理故障,如:电路板坏、磁头损坏、盘面划伤、坏扇区、固件坏等; 4、误操作…...

12个VIM编辑器的高级玩法
vim 是一个很好用的编辑器,应用十分广泛。但关于 vim,总有一些你不知道的事情,我们需要持续不断的学习。 我经常使用 vim,也经常在各大社区、论坛看到 vim 专家用户分享经验,今天我们就总结其中常用的一部分ÿ…...
⽜客论坛的笔记
项目描述: 一个基本功能完整的论坛项目。项目主要功能有: 基于邮件激活的注册方式,基于MD5加密与加盐的密码存储方式,登录功能加入了随机验证码的验证,实现登陆状态检查、为游客与已登录用户展示不同界面与功能。支持用户上传头像,…...
JS逆向分析某枝网的HMAC加密、wasm模块加密
这是我2022年学做JS逆向成功的例子,URL:(脱敏处理)aHR0cHM6Ly93d3cuZ2R0di5jbi9hdWRpb0NoYW5uZWxEZXRhaWwvOTE 逆向分析: 1、每次XHR的GET请求携带的headers包括: {"X-ITOUCHTV-Ca-Timestamp":…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...
【R语言编程——数据调用】
这里写自定义目录标题 可用库及数据集外部数据导入方法查看数据集信息 在R语言中,有多个库支持调用内置数据集或外部数据,包括studentdata等教学或示例数据集。以下是常见的库和方法: 可用库及数据集 openintro库 该库包含多个教学数据集&a…...
Springboot多数据源配置实践
Springboot多数据源配置实践 基本配置文件数据库配置Mapper包Model包Service包中业务代码Mapper XML文件在某些复杂的业务场景中,我们可能需要使用多个数据库来存储和管理不同类型的数据,而不是仅仅依赖于单一数据库。本技术文档将详细介绍如何在 Spring Boot 项目中进行多数…...
Go 并发编程基础:select 多路复用
select 是 Go 并发编程中非常强大的语法结构,它允许程序同时等待多个通道操作的完成,从而实现多路复用机制,是协程调度、超时控制、通道竞争等场景的核心工具。 一、什么是 select select 类似于 switch 语句,但它用于监听多个通…...
JavaScript性能优化实战大纲
性能优化的核心目标 降低页面加载时间,减少内存占用,提高代码执行效率,确保流畅的用户体验。 代码层面的优化 减少全局变量使用,避免内存泄漏 // 不好的实践 var globalVar I am global;// 好的实践 (function() {var localV…...

【芯片仿真中的X值:隐藏的陷阱与应对之道】
在芯片设计的世界里,X值(不定态)就像一个潜伏的幽灵。它可能让仿真测试顺利通过,却在芯片流片后引发灾难性后果。本文将揭开X值的本质,探讨其危害,并分享高效调试与预防的实战经验。 一、X值的本质与致…...