当前位置: 首页 > news >正文

65_Pandas显示设置(小数位数、有效数字、最大行/列数等)

65_Pandas显示设置(小数位数、有效数字、最大行/列数等)

本文介绍了使用 print() 函数显示 pandas.DataFrame、pandas.Series 等时如何更改设置(小数点后位数、有效数字、最大行/列数等)。

有关如何检查、更改和重置设置值的详细信息,请参阅下面的文章。设置更改仅在同一代码(脚本)内有效。它不会被永久重写,并在其他代码中再次成为默认设置。即使在同一代码中,您也可以临时更改 with 块中的设置。

这里说明的只是显示时的设置,原始数据值本身不会改变。如果您想对数字进行四舍五入或将其转换为指定格式的字符串,请参阅下面的文章。

  • 63_Pandas中数字的四舍五入

导入以下库。 NumPy 用于生成 pandas.DataFrame。请注意,根据 pandas 的版本,设置的默认值可能会有所不同。

import pandas as pd
import numpy as npprint(pd.__version__)
# 0.23.0

这里我们将解释与显示相关的主要项目。

  • 小数点右边的位数:display. precision
  • 有效数字:display.float_format
  • 关于四舍五入的注意事项
  • 最大显示行数:display.max_rows
  • 最大显示列数:display.max_columns
  • 默认显示的行数和列数:display.show_dimensions
  • 总体最大显示宽度:display.width
  • 每列最大显示宽度:display.max_colwidth
  • 列名显示的右对齐/左对齐:display.colheader_justify

小数点右边的位数:display. precision

小数点后的位数用display. precision设置。 默认为 6,无论整数部分有多少位,小数点以下的位数都将是指定的数字。尽管被省略并显示,原始数据值也保留了后续数字的信息。

print(pd.options.display.precision)
# 6s_decimal = pd.Series([123.456, 12.3456, 1.23456, 0.123456, 0.0123456, 0.00123456])print(s_decimal)
# 0    123.456000
# 1     12.345600
# 2      1.234560
# 3      0.123456
# 4      0.012346
# 5      0.001235
# dtype: float64print(s_decimal[5])
# 0.00123456

根据display. precision的设置值,格式(显示格式)发生变化并变为指数表示法。

pd.options.display.precision = 4print(s_decimal)
# 0    123.4560
# 1     12.3456
# 2      1.2346
# 3      0.1235
# 4      0.0123
# 5      0.0012
# dtype: float64pd.options.display.precision = 2print(s_decimal)
# 0    1.23e+02
# 1    1.23e+01
# 2    1.23e+00
# 3    1.23e-01
# 4    1.23e-02
# 5    1.23e-03
# dtype: float64

如果要控制格式,请使用 display.float_format,如下所述。

有效数字:display.float_format

用display. precision可以设置的是小数点后的位数,如果想指定包括整数部分在内的有效数字(significantdigits)的个数,则使用display.float_format。默认为“None”。

print(pd.options.display.float_format)
# None

display.float_format 指定一个可调用对象(函数、方法等),该对象将浮点float类型转换为任何格式的字符串。基本上,您可以考虑指定字符串方法format()。

格式规范字符串’.[位数]f’可用于指定小数点后的位数,'.[位数]g’可用于指定总位数(有效数字) )。

pd.options.display.float_format = '{:.2f}'.formatprint(s_decimal)
# 0   123.46
# 1    12.35
# 2     1.23
# 3     0.12
# 4     0.01
# 5     0.00
# dtype: float64pd.options.display.float_format = '{:.4g}'.formatprint(s_decimal)
# 0      123.5
# 1      12.35
# 2      1.235
# 3     0.1235
# 4    0.01235
# 5   0.001235
# dtype: float64

如果要显示相同的位数,请使用“.[位数]e”来使用指数表示法。由于整数部分始终为 1 位,因此有效数字为设定的位数 + 1。

pd.options.display.float_format = '{:.4e}'.formatprint(s_decimal)
# 0   1.2346e+02
# 1   1.2346e+01
# 2   1.2346e+00
# 3   1.2346e-01
# 4   1.2346e-02
# 5   1.2346e-03
# dtype: float64

由于可以使用任何格式规范字符串,因此也可以进行左对齐和百分比显示等对齐方式,如下所示。关于如何指定格式等详细信息,请参见上面format()的相关文章。

pd.options.display.float_format = '{: <10.2%}'.formatprint(s_decimal)
# 0   12345.60% 
# 1   1234.56%  
# 2   123.46%   
# 3   12.35%    
# 4   1.23%     
# 5   0.12%     
# dtype: float64

关于四舍五入的注意事项

display. precision 和 display.float_format 对值进行四舍五入,但不是一般四舍五入,而是四舍五入为偶数;例如,0.5 四舍五入为 0。

df_decimal = pd.DataFrame({'s': ['0.4', '0.5', '0.6', '1.4', '1.5', '1.6'],'f': [0.4, 0.5, 0.6, 1.4, 1.5, 1.6]})pd.options.display.float_format = '{:.0f}'.formatprint(df_decimal)
#      s  f
# 0  0.4  0
# 1  0.5  0
# 2  0.6  1
# 3  1.4  1
# 4  1.5  2
# 5  1.6  2

另外,在四舍五入到小数点时,根据该值,可以四舍五入到偶数,也可以四舍五入到奇数。

df_decimal2 = pd.DataFrame({'s': ['0.04', '0.05', '0.06', '0.14', '0.15', '0.16'],'f': [0.04, 0.05, 0.06, 0.14, 0.15, 0.16]})pd.options.display.float_format = '{:.1f}'.formatprint(df_decimal2)
#       s   f
# 0  0.04 0.0
# 1  0.05 0.1
# 2  0.06 0.1
# 3  0.14 0.1
# 4  0.15 0.1
# 5  0.16 0.2

这是由于浮点数的处理造成的。

最大显示行数:display.max_rows

最大显示行数通过display.max_rows 设置。如果行数超过display.max_rows的值,则省略中间部分,显示开头和结尾。 默认值为 60。

print(pd.options.display.max_rows)
# 60df_tall = pd.DataFrame(np.arange(300).reshape((100, 3)))pd.options.display.max_rows = 10print(df_tall)
#       0    1    2
# 0     0    1    2
# 1     3    4    5
# 2     6    7    8
# 3     9   10   11
# 4    12   13   14
# ..  ...  ...  ...
# 95  285  286  287
# 96  288  289  290
# 97  291  292  293
# 98  294  295  296
# 99  297  298  299
# [100 rows x 3 columns]

如果只想显示开头或结尾,请使用 head() 或 tail()。同样在这种情况下,如果行数超过display.max_rows的值,则中间部分被省略。

  • 18_Pandas.DataFrame,取得Series的头和尾(head和tail)
print(df_tall.head(10))
#     0   1   2
# 0   0   1   2
# 1   3   4   5
# 2   6   7   8
# 3   9  10  11
# 4  12  13  14
# 5  15  16  17
# 6  18  19  20
# 7  21  22  23
# 8  24  25  26
# 9  27  28  29print(df_tall.head(20))
#      0   1   2
# 0    0   1   2
# 1    3   4   5
# 2    6   7   8
# 3    9  10  11
# 4   12  13  14
# ..  ..  ..  ..
# 15  45  46  47
# 16  48  49  50
# 17  51  52  53
# 18  54  55  56
# 19  57  58  59
# [20 rows x 3 columns]

如果将其设置为“None”,则将显示所有行而不省略。

pd.options.display.max_rows = None

最大显示列数:display.max_columns

显示列的最大数量通过display.max_columns 设置。如果列数超过display.max_columns的值,则省略中间部分,显示开头和结尾。 默认为20,如果设置为None,则将显示所有列,不会被省略。

print(pd.options.display.max_columns)
# 20df_wide = pd.DataFrame(np.arange(90).reshape((3, 30)))print(df_wide)
#    0   1   2   3   4   5   6   7   8   9  ...  20  21  22  23  24  25  26  27  \
# 0   0   1   2   3   4   5   6   7   8   9 ...  20  21  22  23  24  25  26  27   
# 1  30  31  32  33  34  35  36  37  38  39 ...  50  51  52  53  54  55  56  57   
# 2  60  61  62  63  64  65  66  67  68  69 ...  80  81  82  83  84  85  86  87   
#    28  29  
# 0  28  29  
# 1  58  59  
# 2  88  89  
# [3 rows x 30 columns]pd.options.display.max_columns = 10print(df_wide)
#    0   1   2   3   4  ...  25  26  27  28  29
# 0   0   1   2   3   4 ...  25  26  27  28  29
# 1  30  31  32  33  34 ...  55  56  57  58  59
# 2  60  61  62  63  64 ...  85  86  87  88  89
# [3 rows x 30 columns]pd.options.display.max_columns = Noneprint(df_wide)
#    0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  \
# 0   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18   
# 1  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48   
# 2  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78   
#    19  20  21  22  23  24  25  26  27  28  29  
# 0  19  20  21  22  23  24  25  26  27  28  29  
# 1  49  50  51  52  53  54  55  56  57  58  59  
# 2  79  80  81  82  83  84  85  86  87  88  89  

整体显示宽度通过display.width设置。见下文。 另外,在终端中运行时,display.max_columns 的默认值为 0,并且根据终端的宽度自动省略。

默认显示的行数和列数:display.show_dimensions

与前面的示例一样,如果省略了行和列,则行数和列数将显示在末尾,例如[3 行 x 30 列]。 可以使用 display.show_dimensions 配置此行为。默认为“truncate”,只有省略时才会显示行数和列数。

print(pd.options.display.show_dimensions)
# truncatepd.options.display.max_columns = 10print(df_wide)
#    0   1   2   3   4  ...  25  26  27  28  29
# 0   0   1   2   3   4 ...  25  26  27  28  29
# 1  30  31  32  33  34 ...  55  56  57  58  59
# 2  60  61  62  63  64 ...  85  86  87  88  89
# [3 rows x 30 columns]df = pd.DataFrame(np.arange(12).reshape((3, 4)))print(df)
#    0  1   2   3
# 0  0  1   2   3
# 1  4  5   6   7
# 2  8  9  10  11

如果设置为True,则无论是否省略都会始终显示,如果设置为False,则始终隐藏。

pd.options.display.show_dimensions = Trueprint(df_wide)
#    0   1   2   3   4  ...  25  26  27  28  29
# 0   0   1   2   3   4 ...  25  26  27  28  29
# 1  30  31  32  33  34 ...  55  56  57  58  59
# 2  60  61  62  63  64 ...  85  86  87  88  89
# [3 rows x 30 columns]print(df)
#    0  1   2   3
# 0  0  1   2   3
# 1  4  5   6   7
# 2  8  9  10  11
# [3 rows x 4 columns]pd.options.display.show_dimensions = Falseprint(df_wide)
#    0   1   2   3   4  ...  25  26  27  28  29
# 0   0   1   2   3   4 ...  25  26  27  28  29
# 1  30  31  32  33  34 ...  55  56  57  58  59
# 2  60  61  62  63  64 ...  85  86  87  88  89print(df)
#    0  1   2   3
# 0  0  1   2   3
# 1  4  5   6   7
# 2  8  9  10  11

总体最大显示宽度:display.width

总体最大显示宽度通过display.width 设置。 默认值为 80。如果超过该值,就会发生换行。换行符处显示反斜杠 \,如下例所示。 即使display.width为None,也不会显示整个图像。

print(pd.options.display.width)
# 80pd.options.display.max_columns = Noneprint(df_wide)
#    0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  \
# 0   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18   
# 1  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48   
# 2  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78   
#    19  20  21  22  23  24  25  26  27  28  29  
# 0  19  20  21  22  23  24  25  26  27  28  29  
# 1  49  50  51  52  53  54  55  56  57  58  59  
# 2  79  80  81  82  83  84  85  86  87  88  89  pd.options.display.width = 60print(df_wide)
#    0   1   2   3   4   5   6   7   8   9   10  11  12  13  \
# 0   0   1   2   3   4   5   6   7   8   9  10  11  12  13   
# 1  30  31  32  33  34  35  36  37  38  39  40  41  42  43   
# 2  60  61  62  63  64  65  66  67  68  69  70  71  72  73   
#    14  15  16  17  18  19  20  21  22  23  24  25  26  27  \
# 0  14  15  16  17  18  19  20  21  22  23  24  25  26  27   
# 1  44  45  46  47  48  49  50  51  52  53  54  55  56  57   
# 2  74  75  76  77  78  79  80  81  82  83  84  85  86  87   
#    28  29  
# 0  28  29  
# 1  58  59  
# 2  88  89  pd.options.display.width = Noneprint(df_wide)
#    0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  \
# 0   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18   
# 1  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48   
# 2  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78   
#    19  20  21  22  23  24  25  26  27  28  29  
# 0  19  20  21  22  23  24  25  26  27  28  29  
# 1  49  50  51  52  53  54  55  56  57  58  59  
# 2  79  80  81  82  83  84  85  86  87  88  89  

每列最大显示宽度:display.max_colwidth

每列的最大显示宽度通过display.max_colwidth 设置。 默认值为 50。

print(pd.options.display.max_colwidth)
# 50df_long_col = pd.DataFrame({'col': ['a' * 10, 'a' * 30, 'a' * 60]})print(df_long_col)
#                                                  col
# 0                                         aaaaaaaaaa
# 1                     aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
# 2  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...pd.options.display.max_colwidth = 80print(df_long_col)
#                                                             col
# 0                                                    aaaaaaaaaa
# 1                                aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
# 2  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

每一列都被省略以适应 display.max_colwidth 设置。

df_long_col2 = pd.DataFrame({'col1': ['a' * 10, 'a' * 30, 'a' * 60],'col2': ['a' * 10, 'a' * 30, 'a' * 60]})pd.options.display.max_colwidth = 20print(df_long_col2)
#                   col1                 col2
# 0           aaaaaaaaaa           aaaaaaaaaa
# 1  aaaaaaaaaaaaaaaa...  aaaaaaaaaaaaaaaa...
# 2  aaaaaaaaaaaaaaaa...  aaaaaaaaaaaaaaaa...

列名columns不受display.max_colwidth的影响,不能省略。

df_long_col_header = pd.DataFrame({'a' * 60: ['a' * 10, 'a' * 30, 'a' * 60]})pd.options.display.max_colwidth = 40print(df_long_col_header)
#   aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
# 0                               aaaaaaaaaa                    
# 1           aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa                    
# 2  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...                 

列名显示的右对齐/左对齐:display.colheader_justify

列名显示的右对齐或左对齐通过d​​isplay.colheader_justify 设置。 默认为“right”。如果要将其左对齐,请使用“left”。

print(pd.options.display.colheader_justify)
# rightprint(df_long_col)
#                                        col
# 0                               aaaaaaaaaa
# 1           aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
# 2  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...pd.options.display.colheader_justify = 'left'print(df_long_col)
#   col                                     
# 0                               aaaaaaaaaa
# 1           aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
# 2  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...

相关文章:

65_Pandas显示设置(小数位数、有效数字、最大行/列数等)

65_Pandas显示设置&#xff08;小数位数、有效数字、最大行/列数等&#xff09; 本文介绍了使用 print() 函数显示 pandas.DataFrame、pandas.Series 等时如何更改设置&#xff08;小数点后位数、有效数字、最大行/列数等&#xff09;。 有关如何检查、更改和重置设置值的详细…...

一个失败架构升级案例

架构师的核心能力-抽象能力 在做架构升级的时候&#xff0c; 升级开始&#xff1a; 升级过程&#xff1a; 结束&#xff1a; 虽然升级完了能很好的满足未来的需求&#xff0c;但是在升级的过程中一个需求可能要同时在新老链路里同时实现&#xff0c;风险和工作量加倍。 架构…...

VM虚拟机运行的Ubuntu连入同一局域网,并实现双机方法

环境&#xff1a; Windows 10 VMware Workstation Pro 16 Ubuntu 20.4 在虚拟机设置桥接模式 确保虚拟机处于关闭状态&#xff0c;在Vm中设置&#xff1a; 编辑->虚拟网络编辑器 如果你以前设置过&#xff0c;可以重置之。 重置之后&#xff0c;添加桥接模式&#xff1a; …...

MySQL启动错误总结

centos7中出现mysql启动失败排查方法&#xff1a;首先找到/var/log/mysqd.log 第一种启动失败&#xff1a; 查看包含最后几行包含error的行&#xff1b; [ERROR] Unix socket lock file is empty /tmp/mysql.sock.lock.[ERROR] Unable to setup unix socket lock file.[ERROR] …...

Linux软件包名称含AMD,ARM,x64的详解

下载clickhouse-backup时看到不同软件包&#xff0c;有的是x86&#xff0c;有的是amd64&#xff0c;有的是arm64&#xff0c;这些有啥区别呢&#xff1f; clickhouse-backup-2.4.2-1.x86_64.rpm clickhouse-backup_2.4.2_amd64.deb clickhouse-backup_2.4.2_arm64.deb x86 和 …...

光伏生产机器视觉系统应用场景全解析

​ 光伏产品的核心追求即为光电转化率&#xff0c;降本增效是光伏企业发展的永久动力。而光电转化率的提升、生产的降本增效&#xff0c;则来自于光伏硅片、电池片、组件、辅料等多个环节生产技术的提升和创新。光伏产品作为高产能、高精度的制造业产品&#xff0c;各段产业链上…...

ChatGPT DALL-E 3的系统提示词大全

每当给出图像的描述时&#xff0c;使用dalle来创建图像&#xff0c;然后用纯文本总结用于生成图像的提示。如果用户没有要求创建特定数量的图像&#xff0c;默认创建四个标题&#xff0c;这些标题应尽可能多样化。发送给Dalle的所有标题都必须遵循以下策略&#xff1a;1.如果描…...

Linux性能优化--补充

14.1. 性能工具的位置 本书描述的性能工具来源于Internet上许多不同的位置。幸运的是&#xff0c;大多数主要发行版都把它们放在一起&#xff0c;包含在了其发行版的当前版本中。表A-1描述了全部工具&#xff0c;提供了指向其原始源位置的地址&#xff0c;并注明它们是否包含在…...

用PHP爬取视频代码示例详细教程

以下是一个使用Symfony Panther和PHP进行爬虫的示例程序&#xff0c;用于爬虫企鹅上的视频。请注意&#xff0c;这个示例需要使用https://www.duoip.cn/get_proxy这段代码获取爬虫IP。 <?php // 引入所需的库 require vendor/autoload.php;use Symfony\Component\Panther\P…...

【笔记】centos7 python2.7.5安装paramiko

更直接的方式&#xff0c;参考: 离线安装_离线安装paramiko 这个更简单。 准备 资源链接: https://download.csdn.net/download/qq_26834611/88445708https://download.csdn.net/download/qq_26834611/88445708 或者选择自己下载 1. 下载python-devel 在一台能联网的cent…...

Neo4j入门教程2(看不懂评论区随便骂)

1. ORDER BY create (s4:student{age:21,num:98}),(s5:student{age:22,num:86}),(s6:student{age:23,num:99})承接上文&#xff0c;创建三个学生节点&#xff0c;标签为student1、student2、student3&#xff0c;分别拥有age属性和num属性 match(s:student) return s查看我们…...

Vue3.0的设计目标是什么?做了哪些优化

一、设计目标 不以解决实际业务痛点的更新都是耍流氓&#xff0c;下面我们来列举一下Vue3之前我们或许会面临的问题 随着功能的增长&#xff0c;复杂组件的代码变得越来越难以维护缺少一种比较「干净」的在多个组件之间提取和复用逻辑的机制类型推断不够友好bundle的时间太久…...

Linux介绍 (什么是Linux)

Linux介绍 &#xff08;什么是Linux&#xff09; 目录 &#x1f34e;一.Linux历史&#x1f34e; 1.UNIX发展的历史 2.Linux发展历史 &#x1f34f;二.开源&#x1f34f; &#x1f351;三.官网&#x1f351; &#x1f34a;四.企业应用现状&#x1f34a; 1.Linux在服务器…...

Android中使用Java操作List集合的方法合集,包括判读是否有重复元素等

1、判断是否有重复元素 List<String> mList new ArrayList<>();//将List转为Set&#xff0c;通过比较大小是否一样&#xff0c;判断是否有重复元素 Set<String> stringSet new HashSet<>(mList); boolean isHasRepeat false; if (mTipBeanList.siz…...

Rabbitmq 的管理配置

1、Rabbitmq管理 1.1、多租户与权限 每一个RabbitMQ 服务器都能创建虚拟的消息服务器&#xff0c;我们称之为虚拟主机(virtual host) ,简称为vhost 。每一个vhost 本质上是一个独立的小型RabbitMQ 服务器&#xff0c;拥有自己独立的队列、交换器及绑定关系等&#xff0c;井且它…...

Linux性能优化--性能追踪2:延迟敏感的应用程序

11.0 概述 本章包含了一个例子&#xff1a;如何用Linux性能工具在延迟敏感的应用程序中寻找并修复性能问题。 阅读本章后&#xff0c;你将能够&#xff1a; 在延迟敏感的应用程序中用ltrace和oprofile弄清楚哪里产生了延迟。对“热点”函数的每个调用&#xff0c;用gdb生成栈…...

分类网络-类别不均衡问题之FocalLoss

有训练和测代码如下&#xff1a;(完整代码来自CNN从搭建到部署实战) train.py import torch import torchvision import time import argparse import importlib from loss import FocalLossdef parse_args():parser argparse.ArgumentParser(training)parser.add_argument(-…...

记录一下ComboBox在listview中的问题,后面再解决。

在listview的ComboBox&#xff0c;ViewModel类得不到ComboBox的 SelectedModeIndex 和 SelectionChanged事件。 问题描述&#xff1a; 1. 在listview中有ComboBox 2. 数据源类 InspectionInfo &#xff0c;其中有ComboBox的绑定数据源 ModelList&#xff0c;代码如下&#…...

手写一个PrattParser基本运算解析器1: 编译原理概述

点击查看 基于Swift的PrattParser项目 编译原理概述 编译原理是我们每一个程序猿必须要了解的技能, 编译原理实际上并没有啥高深的技术, 我们如果在做业务开发, 也很少会用到编译开发的知识, 但是编译原理又是我们必备的基础知识之一. 所以我们需要对编译原理的内容有一个大概的…...

ZKP3.2 Programming ZKPs (Arkworks Zokrates)

ZKP学习笔记 ZK-Learning MOOC课程笔记 Lecture 3: Programming ZKPs (Guest Lecturers: Pratyush Mishra and Alex Ozdemir) 3.3 Using a library ( tutorial) R1CS Libraries A library in a host language (Eg: Rust, OCaml, C, Go, …)Key type: constraint system Mai…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...