当前位置: 首页 > news >正文

数据迁移一致性测试探索与实践

背景

量级庞大的日志通过mysql不足以支撑业务需求,以前通过任务调度定时跑批从mysql同步到hive存储,这种方式时效性为T+1,也就是说今天的日志,明天才能同步到hive,总而言之时效性不高。为了提高时效性,改为流式计算flink实时同步

  • 那么作为测试人员,我们如何保证切换同步方式后的数据正确性呢?通过对比新旧表数据是否一致显然是最简单的方法
  • 这次改动涉及600多张表,每一张表的字段数基本在千以上,甚至部分表字段数达万以上,面对如此庞大的数据量,通过人眼一个个去对比显然不太现实

探索与实践

方案一:sql脚本
SELECT column_names, COUNT(*) AS count_diff 
FROM (SELECT CONCAT_WS(',',A,B) FROM udc_test.s000 WHERE dt='20230814'UNION ALL SELECT CONCAT_WS(',',A,B) FROM test.s000 WHERE dt = '20230814' and rule_log_id in (select rule_log_id from udc_test.s000) 
) AS combined
GROUP BY column_names
HAVING COUNT(column_names) = 1select * from (select 'table1',A,B from udc_test.s000 WHERE dt='20230814' and rule_log_id in ('123456')union all select 'table2',A,B from test.s000 WHERE dt='20230814' and rule_log_id in ('123456')
)a order by a.table1 asc
方案二:python脚本
from pyhive import hive
from datetime import datetimeif __name__ == '__main__':#换成生产的连接conn = hive.Connection(host="xxx", port='xxx', auth="xxx", database='xxx', username='xxx',password='xxx')#这里换成需要比较的表名tableName1 = 'test.ssc_python_compare_fields1'tableName2 = 'test.ssc_python_compare_fields2'current_time = datetime.now()hash_code = str(hash(current_time))# 获取表结构query1 = 'desc ' + tableName1query2 = 'desc ' + tableName2cursor = conn.cursor()cursor.execute(query1)columns1 = [row[0] for row in cursor.fetchall()]cursor.execute(query2)columns2 = [row[0] for row in cursor.fetchall()]# 去除掉不需要比较的字段columns1.remove('# Partition Information')columns1.remove('# col_name')columns1.remove('dt')columns2.remove('# Partition Information')columns2.remove('# col_name')columns2.remove('dt')set1 = set(columns1)set2 = set(columns2)# 取出来表1特有的字段,可以保存到文件diffrence1 = set1 - set2print(diffrence1)# 取出来表2特有的字段,可以保存到文件diffrence2 = set2 - set1print(diffrence2)# 取表1和表2共有的字段,用于比较差异intersection = set1 & set2# 生成比较的sqlsql = 'select  'for element in intersection:sql = sql + 'if( nvl(t1.' + element + ',' + hash_code + ' )!= nvl( t2.' + element + ',' + hash_code + ') , \'no\',\'yes\') as ' + element + ' , '#print(sql)sql = sql[:-2]#print(sql)#sql中的dt可以改成具体需要比较的日期sql = sql + ' from ' + tableName1 + ' as t1 left join  ' + tableName2 \+ ' as t2  on  t1.rule_log_id=t2.rule_log_id ' \' and t1.dt= \'20230815\' and t2.dt = \'20230815\'  and t1.apply_type=t2.apply_type   where  'for element in intersection:sql = sql + ' t1.' + element + '!=t2.' + element + ' or 'sql = sql[:-3]print(sql)sql = sql + ' limit 1 '# 执行sql,获取到结果,如果两列不相等的话,值为no,相等的话值为yescursor.execute(sql)result = cursor.fetchone()# print(result)# 获取上述sql的元数据信息metadatas = cursor.descriptionprint('============================================================')# 遍历结果集,查找出比较结果不相同的数据,拿到列名index = 0while index < len(metadatas):if (result[index] != 'yes'):print(metadatas[index][0])index += 1print('============================================================')

相关文章:

数据迁移一致性测试探索与实践

背景 量级庞大的日志通过mysql不足以支撑业务需求&#xff0c;以前通过任务调度定时跑批从mysql同步到hive存储&#xff0c;这种方式时效性为T1&#xff0c;也就是说今天的日志&#xff0c;明天才能同步到hive&#xff0c;总而言之时效性不高。为了提高时效性&#xff0c;改为…...

---图的遍历和最小生成树

广度优先遍历 --- 针对的是顶点遍历 深度优先遍历 如果给的图不是连通图&#xff1f;以某个点为起点就没有遍历完成。那么怎么保证遍历完剩下的点呢&#xff1f;&#xff1f; 在标记数组当中找没有遍历过的点&#xff0c;在进行遍历 最小生成树 生成树&#xff1a;一个连通…...

中文编程工具开发语言编程案例:会员VIP管理系统软件实例

中文编程工具开发语言编程案例&#xff1a;会员VIP管理系统软件实例 中文编程工具开发语言编程案例&#xff1a;会员VIP管理系统软件实例。 软件功能&#xff1a; 1、系统设置&#xff1a;参数设定&#xff0c;账号及权限设置&#xff0c;系统初始化&#xff0c;卡类型设置&a…...

Hive用户中文使用手册系列(四)

Python Client 在github 上上可以使用 Python client 驱动程序。有关安装说明&#xff0c;请参阅设置 HiveServer2&#xff1a;Python Client 驱动程序。 Ruby Client 一个 Ruby client 驱动程序在https://github.com/forward3d/rbhive的 github 上可用。 与 SQuirrel SQL …...

高级深入--day37

手机App抓包爬虫 1. items.py class DouyuspiderItem(scrapy.Item):name scrapy.Field()# 存储照片的名字imagesUrls scrapy.Field()# 照片的url路径imagesPath scrapy.Field()# 照片保存在本地的路径2. spiders/douyu.py import scrapy import json from douyuSpider.it…...

Web自动化测试:测试用例断言!

运行测试用例时&#xff0c;需要判断用例是否执行成功&#xff0c;此时需要有一个我们期望的结果来进行验证。这里unittest中&#xff0c;如果一个case执行的过程中报错&#xff0c;或者我们判断结果不符合期望&#xff0c;就会判定此条用例执行失败&#xff0c;判断的条件主要…...

基于SSM的培训学校教学管理平台的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…...

2019年亚太杯APMCM数学建模大赛A题基于图像分析的二氧化硅熔化表示模型求解全过程文档及程序

2019年亚太杯APMCM数学建模大赛 A题 基于图像分析的二氧化硅熔化表示模型 原题再现 铁尾矿的主要成分是二氧化硅&#xff0c;而二氧化硅是铁尾矿成分中最难熔化的部分。因此&#xff0c;铁尾矿的熔融行为可以用二氧化硅的熔融行为来表示。然而&#xff0c;高温熔池的温度超过…...

C++之继承<2>【详解】

C之继承&#xff1c;2&#xff1e;【详解】 1. 派生类的默认成员函数1.1 1. 构造成员函数1.2 拷贝复制1.3 构造函数和析构函数的执行顺序 2. 继承和友元3. 继承与静态成员 1. 派生类的默认成员函数 1.1 1. 构造成员函数 派生类的构造函数必须调用基类的构造函数初始化基类的那…...

解决Kafka新消费者组导致重复消费的问题

问题描述&#xff1a;在使用Kafka时&#xff0c;当我们向新的消费者组中添加消费者时&#xff0c;可能会遇到重复消费的问题。本文将介绍一些解决这个问题的方法&#xff0c;帮助开发者更好地处理Kafka中的消费者组和消费偏移量。 Kafka是一个强大的分布式消息队列系统&#xf…...

公允价值会计(fair-value accounting)

《公允价值会计》是2008年经济科学出版社出版图书。 公允价值会计又称市值会计&#xff0c;是指以市场价值或未来现金流量的现值作为资产和负债的主要计量属性的会计模式。随着现代交通和通讯技术的发展&#xff0c;在工业社会中相互分割的市场正在走向世界一体化&#xff0c;…...

【java调取第三方接口,获取数据并保存至数据库】

java调取第三方接口&#xff0c;获取数据并保存至数据库 Overridepublic void doPost() {// 创建Httpclient对象CloseableHttpClient httpClient HttpClients.createDefault();CloseableHttpResponse response null;String resultString "";String url "htt…...

图论01-【无权无向】-图的基本表示-邻接矩阵/邻接表

文章目录 1. 代码仓库2. 图的基本表示的比较3. 邻接矩阵&#xff1a;Array和TreeSet3.1 图示3.2 Array主要代码解析3.3 测试输出3.4 使用TreeSet的代码 4. 邻接表&#xff1a;LinkedList4.1 图示4.2 LinkedList主要代码解析4.3 测试输出 5. 完整代码5.1 邻接表 - Array5.2 邻接…...

Bootstrap的列表组相关知识

目录 01-列表组的相关基础知识02-一个简单的列表组示例03-激活或禁用列表组的一行或多行04-设置列表项的颜色05-给列表项添加徽章 01-列表组的相关基础知识 Bootstrap的list-group是一个用于创建列表组件的CSS类&#xff0c;通常用于显示一个项目列表&#xff0c;如导航菜单或…...

Linux简单安装ffmpeg 实现用PHP压缩音频

一、下载安装 1、官方下载地址&#xff1a;Download FFmpeg 2、下载完上传到服务器然 然后解压就算安装完成了 tar -xf ffmpeg-git-amd64-static.tar.xz 3、然后配置一下全局变量&#xff08;当然也可以不用配置 使用的时候带上文件路径就行&#xff09; cd /usr/bin ln -s…...

Vue解决 npm -v 报错(一)

报错内容&#xff1a; npm WARN config global --global, --local are deprecated. Use --locationglobal instead. 解决方案&#xff1a; 代码&#xff1a; prefix -g 替换为&#xff1a; prefix --locationglobal 原创作者&#xff1a;吴小糖 创作时间&#xff1a;2023.1…...

IP地址是如何定位的

IP地址定位原理和方法 在互联网时代&#xff0c;了解设备或用户的地理位置对于各种应用和服务至关重要&#xff0c;从广告定向到网络安全。IP地址定位是一种常用的方法&#xff0c;允许确定IP地址背后的实际地理位置。本文将介绍IP地址定位的原理和方法。 IP地址基础&#xf…...

【分布式】入门级NCCL多机并行实践 - 02

# 背景知识 大模型和分布式训练对数据的吞吐量以及并行度都有很高的要求&#xff0c;NCCL就是在这个背景下诞生的。 如果你是一个只会写写Python&#xff0c;调用PyTorch和Horovod的算法萌新&#xff0c;可能对于分布式底层的东西不太了解&#xff0c;在下岗热潮中被主管逼着…...

Rust的模式匹配

文章目录 match匹配if let匹配 match匹配 match可以结合枚举使用&#xff0c;例如 enum IpVersion {V4,V6, }fn ParseIpVersion(version: IpVersion) -> String {match version {IpVersion::V4 > String::from("ipv4"),IpVersion::V6 > String::from(&quo…...

操作系统【OS】虚拟机

定义 使用虚拟化技术&#xff0c;将一台物理机器虚化为多台虚拟机器VM&#xff0c;每个虚拟机器都可用独立运行一个操作系统 分类 传统计算机 第一类VMM 第二类VMM...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...