当前位置: 首页 > news >正文

如何正确停止线程?为什么 volatile 标记位的停止方法是错误的?

Java全能学习+面试指南:https://javaxiaobear.cn
今天我们主要学习如何正确停止一个线程?以及为什么用 volatile 标记位的停止方法是错误的?

首先,我们来复习如何启动一个线程,想要启动线程需要调用 Thread 类的 start() 方法,并在 run() 方法中定义需要执行的任务。启动一个线程非常简单,但如果想要正确停止它就没那么容易了。

原理介绍

通常情况下,我们不会手动停止一个线程,而是允许线程运行到结束,然后让它自然停止。但是依然会有许多特殊的情况需要我们提前停止线程,比如:用户突然关闭程序,或程序运行出错重启等。

在这种情况下,即将停止的线程在很多业务场景下仍然很有价值。尤其是我们想写一个健壮性很好,能够安全应对各种场景的程序时,正确停止线程就显得格外重要。但是Java 并没有提供简单易用,能够直接安全停止线程的能力。

为什么不强制停止?而是通知、协作

对于 Java 而言,最正确的停止线程的方式是使用 interrupt。但 interrupt 仅仅起到通知被停止线程的作用。而对于被停止的线程而言,它拥有完全的自主权,它既可以选择立即停止,也可以选择一段时间后停止,也可以选择压根不停止。那么为什么 Java 不提供强制停止线程的能力呢?

事实上,Java 希望程序间能够相互通知、相互协作地管理线程,因为如果不了解对方正在做的工作,贸然强制停止线程就可能会造成一些安全的问题,为了避免造成问题就需要给对方一定的时间来整理收尾工作。比如:线程正在写入一个文件,这时收到终止信号,它就需要根据自身业务判断,是选择立即停止,还是将整个文件写入成功后停止,而如果选择立即停止就可能造成数据不完整,不管是中断命令发起者,还是接收者都不希望数据出现问题。

如何用 interrupt 停止线程

while (!Thread.currentThread().isInterrupted() && more work to do) {do more work
}

明白 Java 停止线程的设计原则之后,我们看看如何用代码实现停止线程的逻辑。我们一旦调用某个线程的 interrupt() 之后,这个线程的中断标记位就会被设置成 true。每个线程都有这样的标记位,当线程执行时,应该定期检查这个标记位,如果标记位被设置成 true,就说明有程序想终止该线程。回到源码,可以看到在 while 循环体判断语句中,首先通过 Thread.currentThread().isInterrupt() 判断线程是否被中断,随后检查是否还有工作要做。&& 逻辑表示只有当两个判断条件同时满足的情况下,才会去执行下面的工作。

我们再看看具体例子。

public class StopThread implements Runnable {@Overridepublic void run() {int count = 0;while (!Thread.currentThread().isInterrupted() && count < 1000) {System.out.println("count = " + count++);}}public static void main(String[] args) throws InterruptedException {Thread thread = new Thread(new StopThread());thread.start();Thread.sleep(5);thread.interrupt();}
}

在 StopThread 类的 run() 方法中,首先判断线程是否被中断,然后判断 count 值是否小于 1000。这个线程的工作内容很简单,就是打印 0~999 的数字,每打印一个数字 count 值加 1,可以看到,线程会在每次循环开始之前,检查是否被中断了。接下来在 main 函数中会启动该线程,然后休眠 5 毫秒后立刻中断线程,该线程会检测到中断信号,于是在还没打印完1000个数的时候就会停下来,这种就属于通过 interrupt 正确停止线程的情况。

sleep 期间能否感受到中断

Runnable runnable = () -> {int num = 0;try {while (!Thread.currentThread().isInterrupted() && num <= 1000) {System.out.println(num);num++;Thread.sleep(1000000);}} catch (InterruptedException e) {e.printStackTrace();}
};

那么我们考虑一种特殊情况,改写上面的代码,如果线程在执行任务期间有休眠需求,也就是每打印一个数字,就进入一次 sleep ,而此时将 Thread.sleep() 的休眠时间设置为 1000 秒钟。

public class StopDuringSleep {public static void main(String[] args) throws InterruptedException {Runnable runnable = () -> {int num = 0;try {while (!Thread.currentThread().isInterrupted() && num <= 1000) {System.out.println(num);num++;Thread.sleep(1000000);}} catch (InterruptedException e) {e.printStackTrace();}};Thread thread = new Thread(runnable);thread.start();Thread.sleep(5);thread.interrupt();}
}

主线程休眠 5 毫秒后,通知子线程中断,此时子线程仍在执行 sleep 语句,处于休眠中。那么就需要考虑一点,在休眠中的线程是否能够感受到中断通知呢?是否需要等到休眠结束后才能中断线程呢?如果是这样,就会带来严重的问题,因为响应中断太不及时了。正因为如此,Java 设计者在设计之初就考虑到了这一点。

如果 sleep、wait 等可以让线程进入阻塞的方法使线程休眠了,而处于休眠中的线程被中断,那么线程是可以感受到中断信号的,并且会抛出一个 InterruptedException 异常,同时清除中断信号,将中断标记位设置成 false。这样一来就不用担心长时间休眠中线程感受不到中断了,因为即便线程还在休眠,仍然能够响应中断通知,并抛出异常。

两种最佳处理方式

在实际开发中肯定是团队协作的,不同的人负责编写不同的方法,然后相互调用来实现整个业务的逻辑。那么如果我们负责编写的方法需要被别人调用,同时我们的方法内调用了 sleep 或者 wait 等能响应中断的方法时,仅仅 catch 住异常是不够的。

void subTas() {try {Thread.sleep(1000);} catch (InterruptedException e) {// 在这里不处理该异常是非常不好的}
}

我们可以在方法中使用 try/catch 或在方法签名中声明 throws  InterruptedException。

方法签名抛异常,run() 强制 try/catch

我们先来看下 try/catch 的处理逻辑。如上面的代码所示,catch 语句块里代码是空的,它并没有进行任何处理。假设线程执行到这个方法,并且正在 sleep,此时有线程发送 interrupt 通知试图中断线程,就会立即抛出异常,并清除中断信号。抛出的异常被 catch 语句块捕捉。

但是,捕捉到异常的 catch 没有进行任何处理逻辑,相当于把中断信号给隐藏了,这样做是非常不合理的,那么究竟应该怎么处理呢?首先,可以选择在方法签名中抛出异常。

void subTask2() throws InterruptedException {Thread.sleep(1000);
}

正如代码所示,要求每一个方法的调用方有义务去处理异常。调用方要不使用 try/catch 并在 catch 中正确处理异常,要不将异常声明到方法签名中。如果每层逻辑都遵守规范,便可以将中断信号层层传递到顶层,最终让 run() 方法可以捕获到异常。而对于 run() 方法而言,它本身没有抛出 checkedException 的能力,只能通过 try/catch 来处理异常。层层传递异常的逻辑保障了异常不会被遗漏,而对 run() 方法而言,就可以根据不同的业务逻辑来进行相应的处理。

再次中断

private void reInterrupt() {try {Thread.sleep(2000);} catch (InterruptedException e) {Thread.currentThread().interrupt();e.printStackTrace();}
}

除了刚才推荐的将异常声明到方法签名中的方式外,还可以在 catch 语句中再次中断线程。如代码所示,需要在 catch 语句块中调用 Thread.currentThread().interrupt() 函数。因为如果线程在休眠期间被中断,那么会自动清除中断信号。如果这时手动添加中断信号,中断信号依然可以被捕捉到。这样后续执行的方法依然可以检测到这里发生过中断,可以做出相应的处理,整个线程可以正常退出。

我们需要注意,我们在实际开发中不能盲目吞掉中断,如果不在方法签名中声明,也不在 catch 语句块中再次恢复中断,而是在 catch 中不作处理,我们称这种行为是“屏蔽了中断请求”。如果我们盲目地屏蔽了中断请求,会导致中断信号被完全忽略,最终导致线程无法正确停止。

为什么用 volatile 标记位的停止方法是错误的

下面我们来看一看本课时的第二个问题,为什么用 volatile 标记位的停止方法是错误的?

错误的停止方法

首先,我们来看几种停止线程的错误方法。比如 stop(),suspend() 和 resume(),这些方法已经被 Java 直接标记为 @Deprecated。如果再调用这些方法,IDE 会友好地提示,我们不应该再使用它们了。但为什么它们不能使用了呢?是因为 stop() 会直接把线程停止,这样就没有给线程足够的时间来处理想要在停止前保存数据的逻辑,任务戛然而止,会导致出现数据完整性等问题。

而对于 suspend() 和 resume() 而言,它们的问题在于如果线程调用 suspend(),它并不会释放锁,就开始进入休眠,但此时有可能仍持有锁,这样就容易导致死锁问题,因为这把锁在线程被 resume() 之前,是不会被释放的。

假设线程 A 调用了 suspend() 方法让线程 B 挂起,线程 B 进入休眠,而线程 B 又刚好持有一把锁,此时假设线程 A 想访问线程 B 持有的锁,但由于线程 B 并没有释放锁就进入休眠了,所以对于线程 A 而言,此时拿不到锁,也会陷入阻塞,那么线程 A 和线程 B 就都无法继续向下执行。

正是因为有这样的风险,所以 suspend() 和 resume() 组合使用的方法也被废弃了。那么接下来我们来看看,为什么用 volatile 标记位的停止方法也是错误的?

volatile 修饰标记位适用的场景
public class VolatileCanStop implements Runnable {private volatile boolean canceled = false;@Overridepublic void run() {int num = 0;try {while (!canceled && num <= 1000000) {if (num % 10 == 0) {System.out.println(num + "是10的倍数。");}num++;Thread.sleep(1);}} catch (InterruptedException e) {e.printStackTrace();}}public static void main(String[] args) throws InterruptedException {VolatileCanStop r = new VolatileCanStop();Thread thread = new Thread(r);thread.start();Thread.sleep(3000);r.canceled = true;}
}

什么场景下 volatile 修饰标记位可以让线程正常停止呢?如代码所示,声明了一个叫作 VolatileStopThread 的类, 它实现了 Runnable 接口,然后在 run() 中进行 while 循环,在循环体中又进行了两层判断,首先判断 canceled 变量的值,canceled 变量是一个被 volatile 修饰的初始值为 false 的布尔值,当该值变为 true 时,while 跳出循环,while 的第二个判断条件是 num 值小于1000000(一百万),在while 循环体里,只要是 10 的倍数就打印出来,然后 num++。

接下来,首先启动线程,然后经过 3 秒钟的时间,把用 volatile 修饰的布尔值的标记位设置成 true,这样,正在运行的线程就会在下一次 while 循环中判断出 canceled 的值已经变成 true 了,这样就不再满足 while 的判断条件,跳出整个 while 循环,线程就停止了,这种情况是演示 volatile 修饰的标记位可以正常工作的情况,但是如果我们说某个方法是正确的,那么它应该不仅仅是在一种情况下适用,而在其他情况下也应该是适用的。

volatile 修饰标记位不适用的场景

接下来我们就用一个生产者/消费者模式的案例来演示为什么说  volatile 标记位的停止方法是不完美的。

class Producer implements Runnable {public volatile boolean canceled = false;BlockingQueue storage;public Producer(BlockingQueue storage) {this.storage = storage;}@Overridepublic void run() {int num = 0;try {while (num <= 100000 && !canceled) {if (num % 50 == 0) {storage.put(num);System.out.println(num + "是50的倍数,被放到仓库中了。");}num++;}} catch (InterruptedException e) {e.printStackTrace();} finally {System.out.println("生产者结束运行");}}
}

首先,声明了一个生产者 Producer,通过 volatile 标记的初始值为 false 的布尔值 canceled 来停止线程。而在 run() 方法中,while 的判断语句是 num 是否小于 100000 及 canceled 是否被标记。while 循环体中判断 num 如果是 50 的倍数就放到 storage 仓库中,storage 是生产者与消费者之间进行通信的存储器,当 num 大于 100000 或被通知停止时,会跳出 while 循环并执行 finally 语句块,告诉大家“生产者结束运行”。

class Consumer {BlockingQueue storage;public Consumer(BlockingQueue storage) {this.storage = storage;}public boolean needMoreNums() {if (Math.random() > 0.97) {return false;}return true;}
}

而对于消费者 Consumer,它与生产者共用同一个仓库 storage,并且在方法内通过 needMoreNums() 方法判断是否需要继续使用更多的数字,刚才生产者生产了一些 50 的倍数供消费者使用,消费者是否继续使用数字的判断条件是产生一个随机数并与 0.97 进行比较,大于 0.97 就不再继续使用数字。

public static void main(String[] args) throws InterruptedException {ArrayBlockingQueue storage = new ArrayBlockingQueue(8);Producer producer = new Producer(storage);Thread producerThread = new Thread(producer);producerThread.start();Thread.sleep(500);Consumer consumer = new Consumer(storage);while (consumer.needMoreNums()) {System.out.println(consumer.storage.take() + "被消费了");Thread.sleep(100);}System.out.println("消费者不需要更多数据了。");//一旦消费不需要更多数据了,我们应该让生产者也停下来,但是实际情况却停不下来producer.canceled = true;System.out.println(producer.canceled);}
}

下面来看下 main 函数,首先创建了生产者/消费者共用的仓库 BlockingQueue storage,仓库容量是 8,并且建立生产者并将生产者放入线程后启动线程,启动后进行 500 毫秒的休眠,休眠时间保障生产者有足够的时间把仓库塞满,而仓库达到容量后就不会再继续往里塞,这时生产者会阻塞,500 毫秒后消费者也被创建出来,并判断是否需要使用更多的数字,然后每次消费后休眠 100 毫秒,这样的业务逻辑是有可能出现在实际生产中的。

当消费者不再需要数据,就会将 canceled 的标记位设置为 true,理论上此时生产者会跳出 while 循环,并打印输出“生产者运行结束”。

然而结果却不是我们想象的那样,尽管已经把 canceled 设置成 true,但生产者仍然没有停止,这是因为在这种情况下,生产者在执行 storage.put(num) 时发生阻塞,在它被叫醒之前是没有办法进入下一次循环判断 canceled 的值的,所以在这种情况下用 volatile 是没有办法让生产者停下来的,相反如果用 interrupt 语句来中断,即使生产者处于阻塞状态,仍然能够感受到中断信号,并做响应处理。

总结

好了,今天内容就全部讲完了,我们来总结下学到了什么,首先学习了如何正确停止线程,其次是掌握了为什么说 volatile 修饰标记位停止方法是错误的。

如果我们在面试中被问到“你知不知道如何正确停止线程”这样的问题,我想你一定可以完美地回答了,首先,从原理上讲应该用 interrupt 来请求中断,而不是强制停止,因为这样可以避免数据错乱,也可以让线程有时间结束收尾工作。

如果我们是子方法的编写者,遇到了 interruptedException,应该如何处理呢?

我们可以把异常声明在方法中,以便顶层方法可以感知捕获到异常,或者也可以在 catch 中再次声明中断,这样下次循环也可以感知中断,所以要想正确停止线程就要求我们停止方,被停止方,子方法的编写者相互配合,大家都按照一定的规范来编写代码,就可以正确地停止线程了。

最后我们再来看下有哪些方法是不够好的,比如说已经被舍弃的 stop()、suspend() 和 resume(),它们由于有很大的安全风险比如死锁风险而被舍弃,而 volatile 这种方法在某些特殊的情况下,比如线程被长时间阻塞的情况,就无法及时感受中断,所以 volatile 是不够全面的停止线程的方法。

相关文章:

如何正确停止线程?为什么 volatile 标记位的停止方法是错误的?

Java全能学习面试指南&#xff1a;https://javaxiaobear.cn 今天我们主要学习如何正确停止一个线程&#xff1f;以及为什么用 volatile 标记位的停止方法是错误的&#xff1f; 首先&#xff0c;我们来复习如何启动一个线程&#xff0c;想要启动线程需要调用 Thread 类的 start…...

pytorch nn.Embedding 读取gensim训练好的词/字向量(有例子)

最近在跑深度学习模型&#xff0c;发现Embedding随机性太强导致模型结果有出入&#xff0c;因此考虑固定初始随机向量&#xff0c;既提前训练好词/字向量&#xff0c;不多说上代码&#xff01;&#xff01; 1、利用gensim训练字向量&#xff08;词向量自行修改&#xff09; #…...

2.1.1BFS中的Flood Fill和最短路模型

1.池塘计数 农夫约翰有一片 N ∗ M N∗M N∗M 的矩形土地。 最近&#xff0c;由于降雨的原因&#xff0c;部分土地被水淹没了。 现在用一个字符矩阵来表示他的土地。 每个单元格内&#xff0c;如果包含雨水&#xff0c;则用”W”表示&#xff0c;如果不含雨水&#xff0c;…...

Mysql 新增更新、删除新增、忽略

当主键或唯一键冲突时&#xff0c;Mysql可以进行更新、删除新增、忽略插入等操作。 1.更新 当主键或唯一键冲突时&#xff0c;可以指定更新内容。 INSERT INTO table_name (column_name, column_name, column_name) VALUES (column_value, column_value,column_value) ON DUPL…...

Node-模块系统的用法

题记 node.js模块系统的用法&#xff0c;以下是具体操作过程和代码 为了让Node.js的文件可以相互调用&#xff0c;Node.js提供了一个简单的模块系统。 模块是Node.js 应用程序的基本组成部分&#xff0c;文件和模块是一一对应的。 一个 Node.js 文件就是一个模块&#xff0c;这…...

XSS攻击(1), 测试XSS漏洞, 获取cookie

XSS漏洞, 测试XSS漏洞, 获取cookie 一, 概念: XSS(Cross-Site Scripting), 跨站攻击脚本, XSS漏洞发生在前端, 依赖于浏览器的解析引擎, 让前端执行攻击代码. XSS其实也算注入类的攻击, XSS代码注入需要有JavaScript编程基础. 二, 目的: XSS&#xff08;跨站脚本&#xff0…...

linux任务优先级

这篇笔记记录了linux任务&#xff08;指线程而非进程&#xff09;优先级相关的概念&#xff0c;以及用户态可以用来操作这些优先级的系统调用。 基本概念 调度策略 linux内核中的调度器为任务定义了调度策略&#xff0c;也叫调度类&#xff0c;每个任务同一时刻都有唯一的调…...

JVM内存模型概述

这里主要分为五大块&#xff0c;分别是&#xff1a;本地方法栈、方法区、java堆、程序计数器和java栈。其中重点是方法区、java堆和java栈。 下面就把各个区域的性质总结一下&#xff1a;&#xff08;说明&#xff0c;下面的只是结论&#xff0c;没有详细的对各个内存块进行详细…...

【JavaEE】CAS -- 多线程篇(7)

CAS 1. 什么是 CAS2. CAS 伪代码3. CAS 是怎么实现的4. CAS的应用4.1 实现原子类4.2 实现自旋锁 5. CAS 的 ABA 问题 1. 什么是 CAS CAS: 全称Compare and swap&#xff0c;字面意思:”比较并交换“能够比较和交换 某个寄存器中的值和内存中的值, 看是否相等, 如果相等, 则把另…...

18-spring 事务

文章目录 1. xml和注解配置方式的对象2.spring事务传播特性3. 注解事务的初始化流程4. 创建事务信息流程图5. 事务回滚流程图 1. xml和注解配置方式的对象 2.spring事务传播特性 事务传播行为类型说明PROPAGATION_REQUIRED如果当前没有事务&#xff0c;就新建一个事务&#xf…...

Qt窗体设计的布局

本文介绍Qt窗体的布局。 Qt窗体的布局分为手动布局和自动布局&#xff0c;手动布局即靠手工排布各控件的位置。而自动布局则是根据选择的布局类型自动按此类型排布各控件的位置&#xff0c;使用起来比较方便&#xff0c;本文主要介绍Qt的自动布局。 1.垂直布局 垂直布局就是…...

分布式锁 - 理论篇

一、为什么需要分布式锁 二、分布式锁实现 1.分布式锁演进 - 基本原理 我们可以同时去一个地方“占坑”&#xff0c;如果占到&#xff0c;就执行逻辑。否则就必须等待&#xff0c;直到释放锁。“占坑”可以去redis&#xff0c;可以去数据库&#xff0c;可以去任何大家都能访…...

复杂的菱形继承及菱形虚拟继承(详解)

复杂的菱形继承及菱形虚拟继承 复杂的菱形继承及菱形虚拟继承虚拟继承解决数据冗余和二义性的原理笔试面试题 复杂的菱形继承及菱形虚拟继承 单继承&#xff1a;一个子类只有一个直接父类时称这个继承关系为单继承 多继承&#xff1a;一个子类有两个或以上直接父类时称这个继…...

【快捷测试模型是否可以跑通】设置一张图片的张量形式,送入自己写的模型进行测试

文章目录 1. 1. import torch.nn as nn import torch from einops import rearrange, repeat from einops.layers.torch import Rearrange import torch.nn.functional as Fclass PreNorm(nn.Module):def __init__(self, dim, fn):super().__init__()self.norm nn.LayerNorm(…...

软考系列(系统架构师)- 2019年系统架构师软考案例分析考点

试题一 软件架构&#xff08;架构风格、质量属性&#xff09; 【问题1】&#xff08;13分&#xff09; 针对用户级别与折扣规则管理功能的架构设计问题&#xff0c;李工建议采用面向对象的架构风格&#xff0c;而王工则建议采用基于规则的架构风格。请指出该系统更适合采用哪种…...

安防视频监控系统EasyCVR视频汇聚存储平台定制化开发:新增kafka配置

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台可拓展性强、…...

C++设计模式_08_Factory Method工厂方法模式

文章目录 1. “对象创建模式”模式1.1 典型模式 2. 动机&#xff08;Motivation&#xff09;3. 代码演示Factory Method工厂方法模式3.1 常规方法3.2 面向接口的编程3.2.1 FileSplitter1.cpp3.2.2 MainForm1.cpp 3.3 Factory Method工厂方法3.3.1 ISplitterFactory.cpp3.3.2 Ma…...

【TensorFlow1.X】系列学习笔记【基础一】

【TensorFlow1.X】系列学习笔记【基础一】 大量经典论文的算法均采用 TF 1.x 实现, 为了阅读方便, 同时加深对实现细节的理解, 需要 TF 1.x 的知识 文章目录 【TensorFlow1.X】系列学习笔记【基础一】前言线性回归非线性回归逻辑回归总结 前言 本篇博主将用最简洁的代码由浅入…...

Linux 基础操作手记三(内存篇)

Linux 基础操作手记三 释放内存虚拟机彻底无网络测试网速设置虚拟内存交换空间未使用虚拟机设置虚拟内存无法开机问题GParted - 分配内存系统盘扩容自己 释放内存 sync && echo 3 > /proc/sys/vm/drop_caches 虚拟机彻底无网络 还原默认设置&#xff0c;静静的等待…...

NodeJS的初使用,以及引入第三方插件和安装淘宝镜像的教程

NodeJs 命令 npm init -y 生成package.json文件npm i jquery --save–dev 开发依赖(jQuery后面还可以跟模块,可以有多个)npm i jquery --save 生产依赖npm i jquery --D 开发依赖npm uninstall jquery 卸载删除npm i 把删掉的模块,全部重新加载回来 1.介绍 1.什么是NodeJs?…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...