【快捷测试模型是否可以跑通】设置一张图片的张量形式,送入自己写的模型进行测试
文章目录
- 1.
1.
import torch.nn as nn
import torch
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import torch.nn.functional as Fclass PreNorm(nn.Module):def __init__(self, dim, fn):super().__init__()self.norm = nn.LayerNorm(dim)self.fn = fndef forward(self, x, **kwargs):return self.fn(self.norm(x), **kwargs)class FeedForward(nn.Module):def __init__(self, dim, hidden_dim, dropout=0.):super().__init__()self.net = nn.Sequential(nn.Linear(dim, hidden_dim),nn.GELU(),nn.Dropout(dropout),nn.Linear(hidden_dim, dim),nn.Dropout(dropout))def forward(self, x):return self.net(x)class PPM(nn.Module):def __init__(self, pooling_sizes=(1, 3, 5)):super().__init__()self.layer = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size=(size, size)) for size in pooling_sizes])def forward(self, feat):b, c, h, w = feat.shapeoutput = [layer(feat).view(b, c, -1) for layer in self.layer]output = torch.cat(output, dim=-1)return output# Efficient self attention
class ESA_layer(nn.Module):def __init__(self, dim, heads=8, dim_head=64, dropout=0.):super().__init__()inner_dim = dim_head * headsproject_out = not (heads == 1 and dim_head == dim)self.heads = headsself.scale = dim_head ** -0.5self.attend = nn.Softmax(dim=-1)self.to_qkv = nn.Conv2d(dim, inner_dim * 3, kernel_size=1, stride=1, padding=0, bias=False)self.ppm = PPM(pooling_sizes=(1, 3, 5))self.to_out = nn.Sequential(nn.Linear(inner_dim, dim),nn.Dropout(dropout)) if project_out else nn.Identity()def forward(self, x):# input x (b, c, h, w)b, c, h, w = x.shapeq, k, v = self.to_qkv(x).chunk(3, dim=1) # q/k/v shape: (b, inner_dim, h, w)q = rearrange(q, 'b (head d) h w -> b head (h w) d', head=self.heads) # q shape: (b, head, n_q, d)k, v = self.ppm(k), self.ppm(v) # k/v shape: (b, inner_dim, n_kv)k = rearrange(k, 'b (head d) n -> b head n d', head=self.heads) # k shape: (b, head, n_kv, d)v = rearrange(v, 'b (head d) n -> b head n d', head=self.heads) # v shape: (b, head, n_kv, d)dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale # shape: (b, head, n_q, n_kv)attn = self.attend(dots)out = torch.matmul(attn, v) # shape: (b, head, n_q, d)out = rearrange(out, 'b head n d -> b n (head d)')return self.to_out(out)class ESA_blcok(nn.Module):def __init__(self, dim, heads=8, dim_head=64, mlp_dim=512, dropout=0.):super().__init__()self.ESAlayer = ESA_layer(dim, heads=heads, dim_head=dim_head, dropout=dropout)self.ff = PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))def forward(self, x):b, c, h, w = x.shapeout = rearrange(x, 'b c h w -> b (h w) c')out = self.ESAlayer(x) + outout = self.ff(out) + outout = rearrange(out, 'b (h w) c -> b c h w', h=h)return out+x# return outdef MaskAveragePooling(x, mask):mask = torch.sigmoid(mask)b, c, h, w = x.shapeeps = 0.0005x_mask = x * maskh, w = x.shape[2], x.shape[3]area = F.avg_pool2d(mask, (h, w)) * h * w + epsx_feat = F.avg_pool2d(x_mask, (h, w)) * h * w / areax_feat = x_feat.view(b, c, -1)return x_feat# Lesion-aware Cross Attention
class LCA_layer(nn.Module):def __init__(self, dim, heads=8, dim_head=64, dropout=0.):super().__init__()inner_dim = dim_head * headsproject_out = not (heads == 1 and dim_head == dim)self.heads = headsself.scale = dim_head ** -0.5self.attend = nn.Softmax(dim=-1)self.to_qkv = nn.Conv2d(dim, inner_dim * 3, kernel_size=1, stride=1, padding=0, bias=False)self.to_out = nn.Sequential(nn.Linear(inner_dim, dim),nn.Dropout(dropout)) if project_out else nn.Identity()def forward(self, x, mask):# input x (b, c, h, w)b, c, h, w = x.shapeq, k, v = self.to_qkv(x).chunk(3, dim=1) # q/k/v shape: (b, inner_dim, h, w)q = rearrange(q, 'b (head d) h w -> b head (h w) d', head=self.heads) # q shape: (b, head, n_q, d)k, v = MaskAveragePooling(k, mask), MaskAveragePooling(v, mask) # k/v shape: (b, inner_dim, 1)k = rearrange(k, 'b (head d) n -> b head n d', head=self.heads) # k shape: (b, head, 1, d)v = rearrange(v, 'b (head d) n -> b head n d', head=self.heads) # v shape: (b, head, 1, d)dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale # shape: (b, head, n_q, n_kv)attn = self.attend(dots)out = torch.matmul(attn, v) # shape: (b, head, n_q, d)out = rearrange(out, 'b head n d -> b n (head d)')return self.to_out(out)class LCA_blcok(nn.Module):def __init__(self, dim, heads=8, dim_head=64, mlp_dim=512, dropout=0.):super().__init__()self.LCAlayer = LCA_layer(dim, heads=heads, dim_head=dim_head, dropout=dropout)self.ff = PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))def forward(self, x, mask):b, c, h, w = x.shapeout = rearrange(x, 'b c h w -> b (h w) c')out = self.LCAlayer(x, mask) + outout = self.ff(out) + outout = rearrange(out, 'b (h w) c -> b c h w', h=h)return out# test
if __name__ == '__main__':x = torch.rand((4, 3, 320, 320))mask = torch.rand(4, 1, 320, 320)lca = LCA_blcok(dim=3)esa = ESA_blcok(dim=3)print(lca(x, mask).shape)print(esa(x).shape)相关文章:
【快捷测试模型是否可以跑通】设置一张图片的张量形式,送入自己写的模型进行测试
文章目录 1. 1. import torch.nn as nn import torch from einops import rearrange, repeat from einops.layers.torch import Rearrange import torch.nn.functional as Fclass PreNorm(nn.Module):def __init__(self, dim, fn):super().__init__()self.norm nn.LayerNorm(…...
软考系列(系统架构师)- 2019年系统架构师软考案例分析考点
试题一 软件架构(架构风格、质量属性) 【问题1】(13分) 针对用户级别与折扣规则管理功能的架构设计问题,李工建议采用面向对象的架构风格,而王工则建议采用基于规则的架构风格。请指出该系统更适合采用哪种…...
安防视频监控系统EasyCVR视频汇聚存储平台定制化开发:新增kafka配置
安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台可拓展性强、…...
C++设计模式_08_Factory Method工厂方法模式
文章目录 1. “对象创建模式”模式1.1 典型模式 2. 动机(Motivation)3. 代码演示Factory Method工厂方法模式3.1 常规方法3.2 面向接口的编程3.2.1 FileSplitter1.cpp3.2.2 MainForm1.cpp 3.3 Factory Method工厂方法3.3.1 ISplitterFactory.cpp3.3.2 Ma…...
【TensorFlow1.X】系列学习笔记【基础一】
【TensorFlow1.X】系列学习笔记【基础一】 大量经典论文的算法均采用 TF 1.x 实现, 为了阅读方便, 同时加深对实现细节的理解, 需要 TF 1.x 的知识 文章目录 【TensorFlow1.X】系列学习笔记【基础一】前言线性回归非线性回归逻辑回归总结 前言 本篇博主将用最简洁的代码由浅入…...
Linux 基础操作手记三(内存篇)
Linux 基础操作手记三 释放内存虚拟机彻底无网络测试网速设置虚拟内存交换空间未使用虚拟机设置虚拟内存无法开机问题GParted - 分配内存系统盘扩容自己 释放内存 sync && echo 3 > /proc/sys/vm/drop_caches 虚拟机彻底无网络 还原默认设置,静静的等待…...
NodeJS的初使用,以及引入第三方插件和安装淘宝镜像的教程
NodeJs 命令 npm init -y 生成package.json文件npm i jquery --save–dev 开发依赖(jQuery后面还可以跟模块,可以有多个)npm i jquery --save 生产依赖npm i jquery --D 开发依赖npm uninstall jquery 卸载删除npm i 把删掉的模块,全部重新加载回来 1.介绍 1.什么是NodeJs?…...
Java读取文件的N种方法
1.概述 在这篇文章里, 我们将探索不同的方式从文件中读取数据。 首先, 学习通过标准的的Java类,从classpath、URL或者Jar中加载文件。 然后,学习通用BufferedReader, Scanner, StreamTokenizer, DataInputStream, SequenceInput…...
子类的构造与析构过程
一、简介 父类,也称基类,其构造方法和析构方法不能被继承; 子类,也称派生类,继承父类的方法和属性,但要加入新的构造和析构函数。 二、构造与析构过程 构造:先调用父类——>再调用子类 析构&…...
位运算相关笔记
位运算 Part 1:基础 左移:左移一位,相当于某数乘以 2 2 2。左移 x x x位,相当于该数乘以 2 x 2^x 2x。 右移:右移一位,相当于某数除以 2 2 2。右移 x x x位,相当于该数除以 2 x 2^x 2x。 与运算&…...
uniapp 安装 u-view 组件库
u-view 组件库安装教程:https://uviewui.com/components/install.html 注:以下使用 HBuilderx 安装 u-view 2.0 版本,不适用于其它版本。 1.安装 u-view 组件库 2、注册并登录 HBuilderx 账号,点击下载 u-view 组件库。 3、点击…...
Go 语言的成功案例:谁在使用 Go?
Go 语言,也被称为 Golang,是一门由Google开发的开源编程语言。自从2009年首次亮相以来,它在编程社区中崭露头角,并吸引了越来越多的开发者和组织。Go 以其高效的并发性、出色的性能和简单易懂的语法而闻名。在本文中,我…...
UG\NX二次开发 实时查看 NX 日志文件
文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,里海BlockUI专栏,C\C++-CSDN博客 感谢粉丝订阅 感谢 a18037198459 订阅本专栏,非常感谢。 简介 实时查看 NX 日志文件,有助于分析保存时间等。打开WindowsPowerShell并实时获取日志文件内容的小功能。 效果 代…...
ZooKeeper+HBase分布式集群环境搭建
安装版本:hadoop-2.10.1、zookeeper-3.4.12、hbase-2.3.1 一、zookeeper集群搭建与配置 1.下载zookeeper安装包 2.解压移动zookeeper 3.修改配置文件(创建文件夹) 4.进入conf/ 5.修改zoo.cfg文件 6.进入/usr/local/zookeeper-3.4.12/zkdata…...
喜讯!持安科技入选2023年北京市知识产权试点单位!
近日,北京市知识产权局发布了“2023年度北京市知识产权试点示范单位及2020年度北京市知识产权试点示范单位复审通过名单”名单。 经过严格的初审、形式审核和专家评审,北京持安科技有限公司入选“2023年北京市知识产权试点单位”。 北京市知识产权试点示…...
笙默考试管理系统-MyExamTest----codemirror(39)
笙默考试管理系统-MyExamTest----codemirror(39) 目录 一、 笙默考试管理系统-MyExamTest 二、 笙默考试管理系统-MyExamTest 三、 笙默考试管理系统-MyExamTest 四、 笙默考试管理系统-MyExamTest 五、 笙默考试管理系统-MyExamTest 笙默考试…...
抛砖引玉:Redis 与 接口自动化测试框架的结合
接口自动化测试已成为保证软件质量和稳定性的重要手段。而Redis作为一个高性能的缓存数据库,具备快速读写、多种数据结构等特点,为接口自动化测试提供了强大的支持。勇哥这里粗略介绍如何结合Python操作Redis,并将其应用于接口自动化测试框架…...
网站如何才能不被黑,如何做好网络安全
当企业网站受到攻击时,首页文件可能被篡改,百度快照也可能被劫持并重定向到其他网站。首要任务是加强网站的安全防护。然而,许多企业缺乏建立完善的网站安全防护体系的知识。因此,需要专业的网站安全公司来提供相应的保护措施。今…...
人脸写真FaceChain风格写真的试玩(二)
接着上一篇【人脸写真FaceChain的简单部署记录(一)】来试玩一下。 1 无限风格写真 参考:让你拥有专属且万能的AI摄影师AI修图师——FaceChain迎来最大版本更新 1.1 人物形象训练 这里的步骤比较简单,就是选择照片,然…...
PHP 变量
变量 变量的声明、使用、释放 变量定义 形式 $ 变量名;严格区分大小写 $name; $Name; $NAME //三个变量不是同一个变量字母、数字、下划线组成,不能以数字开头,不能包含其他字符(空白字符、特殊字符) 驼峰式命名法、下划线式命名法 $first_name; $fi…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
