当前位置: 首页 > news >正文

位运算相关笔记

位运算

Part 1:基础

  1. 左移:左移一位,相当于某数乘以 2 2 2。左移 x x x位,相当于该数乘以 2 x 2^x 2x

  2. 右移:右移一位,相当于某数除以 2 2 2。右移 x x x位,相当于该数除以 2 x 2^x 2x

  3. 与运算:按位进行“与”运算,两数同一位都为 1 1 1 时结果为 1 1 1,否则为 0 0 0 0 0 0 与任何数都为 0 0 0

  4. 或运算:按位进行“或”运算,两数同一位都为 0 0 0 时结果为 0 0 0,否则为 1 1 1

  5. 非运算:按位取反。

Part 2:异或

简介

异或操作,是指两个数或者多个数之间进行的一种相同为 0 0 0、不同为 1 1 1的位运算。

异或操作通常用 ⊕ \oplus ^表示。

运算律
  • 0 ⊕ n = n 0\oplus n=n 0n=n n ⊕ n = 0 n\oplus n=0 nn=0

  • 结合律

  • 交换律:一堆数在一起进行异或操作时,可以按任意顺序进行。

应用
  • 交换两个数:a=a^b,b=a^b,a=a^b;

  • 找到某个数

    一个数组中只有一个数出现了奇数次,其余数都出现了偶数次,如何找到这个出现奇数次的数?

    根据异或运算的性质,一个数与自己异或等于零,一个数与 0 0 0异或等于本身可知,只需将数组中的所有数进行异或操作即可将出现偶数次的数消掉,得到出现奇数次的。

  • i ⊕ 1 i\oplus 1 i1 表示 i i i 的反向边。

    证明:对于一个数 n n n,如果它是奇数,那么它异或 1 1 1 等于 n − 1 n-1 n1;如果它是偶数,那么它异或 1 1 1 等于 n + 1 n+1 n+1

    对于 Tarjan 求边双连通分量,有一段标记是 isb[i]=isb[i^1]=1(标记该边和它的反向边是桥 bridge),插入的时候是成对插入的( ( 0 , 1 ) 、 ( 1 , 2 ) 、 ⋯ 、 ( 2 k , 2 k + 1 ) (0,1)、(1,2)、\cdots、(2k,2k+1) (0,1)(1,2)(2k,2k+1))。

Part 3:lowbit

定义

lowbit ( n ) \text{lowbit}(n) lowbit(n) 定义为非负整数 n n n在二进制表示下“最低位的 1 1 1及其后面的所有 0 0 0”构成的数值。

举个栗子, n = 10 n=10 n=10 的二进制表示为 ( 1010 ) 2 (1010)_2 (1010)2,则 lowbit ( n ) = 2 = ( 10 ) 2 \text{lowbit}(n)=2=(10)_2 lowbit(n)=2=(10)2

公式

lowbit ( n ) = n & ( ∼ n + 1 ) = n & ( − n ) \text{lowbit}(n)=n\&(\sim n+1)=n\&(-n) lowbit(n)=n&(n+1)=n&(n)

应用

lowbit \text{lowbit} lowbit运算配合Hash,可以找出整数二进制表示下所有是 1 1 1的位,时间复杂度与 1 1 1的个数同级。

实现:不断把 n n n 赋值为 n − lowbit ( n ) n-\text{lowbit}(n) nlowbit(n),直至 n = 0 n=0 n=0

举个栗子: n = 9 = ( 1001 ) 2 n=9=(1001)_2 n=9=(1001)2 lowbit ( 9 ) = 1 \text{lowbit}(9)=1 lowbit(9)=1。把 n n n 赋值为 9 − lowbit ( n ) = 8 = ( 1000 ) 2 9-\text{lowbit}(n)=8=(1000)_2 9lowbit(n)=8=(1000)2 8 − lowbit ( 8 ) = 0 8-\text{lowbit}(8)=0 8lowbit(8)=0,停止循环。在这个过程中减掉了 1 1 1 8 8 8,即 n n n 每一位上的 1 1 1 后补 0 0 0 后的数值。取 log ⁡ 2 1 \log_21 log21 log ⁡ 2 8 \log_28 log28,就可以知道 n n n 的第 1 1 1 位和第 3 3 3 位是 1 1 1

C++中的 log2 函数效率不够高,所以我们要预处理一个数组,用 Hash 代替 log ⁡ \log log 运算。

n n n较小时,可以建立一个数组 h,令 h [ 2 k ] = k h[2^k]=k h[2k]=k

const int maxn=1<<20;
int h[maxn+5];
for(int i=1;i<=20;i++) h[1<<i]=i;
while(cin>>n)
{while(n>0) cout<<h[n&-n]<<' ',n-=n&-n;cout<<endl;
}

还有一种方法,建立一个长度为 37 37 37 的数组 h,令 h [ 2 k m o d 37 ] = k h[2^k\bmod 37]=k h[2kmod37]=k ∀ k ∈ [ 0 , 35 ] \forall k\in[0,35] k[0,35] 2 k m o d 37 2^k\bmod 37 2kmod37 互不相等,可以取遍 1 ∼ 36 1\sim36 136)。

int h[37];
for(int i=0;i<36;i++) h[(1ll<<i)%37]=i;
while(cin>>n)
{while(n>0) cout<<h[(n&-n)%37]<<' ',n-=n&-n;cout<<endl;
}

lowbit 运算还可用于树状数组。

更多函数
  • int __builtin_ctz(unsigned int x)

    int __builtin_ctzll(unsigned long long x)

    返回 x x x 的二进制表示下最低位的 1 1 1 后边有多少个 0 0 0

  • int __builtin_popcount(unsigned int x)

    int __builtin_popcountll(unsigned long long x)

    返回 x x x 的二进制表示下有多少位为 1 1 1

常见操作

  • 查询一个数二进制下的第 i i i 为是不是 1 1 1

    x>>i&1,如果第 i i i 位是 1 1 1 这个值是 1 1 1,否则是 0 0 0

    常见用途: 01 01 01 字典树、线性基

  • 枚举子集

    常用于状压。

    for(int S1=S;S1;S1=(S1-1)&S) S2=S^S1;
    

    其中 S S S 是全集, S 1 S_1 S1 是子集, S 2 S_2 S2 S 1 S_1 S1 的补集。

  • 改变 x x x 的第 i i i

    x|=1<<(i-1);//将x第i位变成1
    x&=~(1<<(i-1));//将x第i位变成0
    
  • 查询 1 1 1 的个数

    int popcount(int n)
    {int cnt=0;while(n) n&=(n-1),cnt++;return cnt;
    }
    

相关文章:

位运算相关笔记

位运算 Part 1&#xff1a;基础 左移&#xff1a;左移一位&#xff0c;相当于某数乘以 2 2 2。左移 x x x位,相当于该数乘以 2 x 2^x 2x。 右移&#xff1a;右移一位&#xff0c;相当于某数除以 2 2 2。右移 x x x位&#xff0c;相当于该数除以 2 x 2^x 2x。 与运算&…...

uniapp 安装 u-view 组件库

u-view 组件库安装教程&#xff1a;https://uviewui.com/components/install.html 注&#xff1a;以下使用 HBuilderx 安装 u-view 2.0 版本&#xff0c;不适用于其它版本。 1.安装 u-view 组件库 2、注册并登录 HBuilderx 账号&#xff0c;点击下载 u-view 组件库。 3、点击…...

Go 语言的成功案例:谁在使用 Go?

Go 语言&#xff0c;也被称为 Golang&#xff0c;是一门由Google开发的开源编程语言。自从2009年首次亮相以来&#xff0c;它在编程社区中崭露头角&#xff0c;并吸引了越来越多的开发者和组织。Go 以其高效的并发性、出色的性能和简单易懂的语法而闻名。在本文中&#xff0c;我…...

UG\NX二次开发 实时查看 NX 日志文件

文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,里海BlockUI专栏,C\C++-CSDN博客 感谢粉丝订阅 感谢 a18037198459 订阅本专栏,非常感谢。 简介 实时查看 NX 日志文件,有助于分析保存时间等。打开WindowsPowerShell并实时获取日志文件内容的小功能。 效果 代…...

ZooKeeper+HBase分布式集群环境搭建

安装版本&#xff1a;hadoop-2.10.1、zookeeper-3.4.12、hbase-2.3.1 一、zookeeper集群搭建与配置 1.下载zookeeper安装包 2.解压移动zookeeper 3.修改配置文件&#xff08;创建文件夹&#xff09; 4.进入conf/ 5.修改zoo.cfg文件 6.进入/usr/local/zookeeper-3.4.12/zkdata…...

喜讯!持安科技入选2023年北京市知识产权试点单位!

近日&#xff0c;北京市知识产权局发布了“2023年度北京市知识产权试点示范单位及2020年度北京市知识产权试点示范单位复审通过名单”名单。 经过严格的初审、形式审核和专家评审&#xff0c;北京持安科技有限公司入选“2023年北京市知识产权试点单位”。 北京市知识产权试点示…...

笙默考试管理系统-MyExamTest----codemirror(39)

笙默考试管理系统-MyExamTest----codemirror&#xff08;39&#xff09; 目录 一、 笙默考试管理系统-MyExamTest 二、 笙默考试管理系统-MyExamTest 三、 笙默考试管理系统-MyExamTest 四、 笙默考试管理系统-MyExamTest 五、 笙默考试管理系统-MyExamTest 笙默考试…...

抛砖引玉:Redis 与 接口自动化测试框架的结合

接口自动化测试已成为保证软件质量和稳定性的重要手段。而Redis作为一个高性能的缓存数据库&#xff0c;具备快速读写、多种数据结构等特点&#xff0c;为接口自动化测试提供了强大的支持。勇哥这里粗略介绍如何结合Python操作Redis&#xff0c;并将其应用于接口自动化测试框架…...

网站如何才能不被黑,如何做好网络安全

当企业网站受到攻击时&#xff0c;首页文件可能被篡改&#xff0c;百度快照也可能被劫持并重定向到其他网站。首要任务是加强网站的安全防护。然而&#xff0c;许多企业缺乏建立完善的网站安全防护体系的知识。因此&#xff0c;需要专业的网站安全公司来提供相应的保护措施。今…...

人脸写真FaceChain风格写真的试玩(二)

接着上一篇【人脸写真FaceChain的简单部署记录&#xff08;一&#xff09;】来试玩一下。 1 无限风格写真 参考&#xff1a;让你拥有专属且万能的AI摄影师AI修图师——FaceChain迎来最大版本更新 1.1 人物形象训练 这里的步骤比较简单&#xff0c;就是选择照片&#xff0c;然…...

PHP 变量

变量 变量的声明、使用、释放 变量定义 形式 $ 变量名;严格区分大小写 $name; $Name; $NAME //三个变量不是同一个变量字母、数字、下划线组成&#xff0c;不能以数字开头&#xff0c;不能包含其他字符(空白字符、特殊字符) 驼峰式命名法、下划线式命名法 $first_name; $fi…...

牛客小白月赛79

给定一个数字n&#xff0c;你可以对它进行接下来的操作—— 选择数字中任意一个数位删除 例如对10​24选择操作百位&#xff0c;数字则变成了124&#xff1b;对1​024选择操作千位&#xff0c;数字则变成了024 我们称一个数字是干净的&#xff0c;当且仅当数字满足以下任意一种…...

面试算法31:最近最少使用缓存

题目 请设计实现一个最近最少使用&#xff08;Least Recently Used&#xff0c;LRU&#xff09;缓存&#xff0c;要求如下两个操作的时间复杂度都是O&#xff08;1&#xff09;。 get&#xff08;key&#xff09;&#xff1a;如果缓存中存在键key&#xff0c;则返回它对应的值…...

如何处理前端SEO(搜索引擎优化)?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…...

Leetcode—2529.正整数和负整数的最大计数【简单】

2023每日刷题&#xff08;四&#xff09; Leetcode—2529.正整数和负整数的最大计数 遍历法实现代码 int maximumCount(int* nums, int numsSize){int i;int neg 0, pos 0;for(i 0; i < numsSize; i) {if(nums[i] < 0) {neg;}if(nums[i] > 0) {pos;}}return (neg…...

数据结构-- 并查集

0. 引入 并查集是来解决等价问题的数据结构。 离散数学中的二元关系。 等价关系需满足自反性、对称性、传递性。 a ∈ S , a R a a R b & b R a a R b ∩ b R c > a R c a \in S, aRa \\ aRb \& bRa \\ aRb \cap bRc >aRc a∈S,aRaaRb&bRaaRb∩bRc>a…...

优维产品最佳实践第12期:IT资源管理首页丰富

​ 背 景 当我们进入平台后&#xff0c;默认跳转至IT资源管理首页&#xff0c;因此该页面的优化与丰富将极大的提高平台使用者的体验和效率。优化后的首页可以更好地展示常用模型、小产品、外部系统、以及保存的所有关系查询和快速查询条件&#xff0c;使用户能够更快捷、方便…...

【Nginx34】Nginx学习:安全链接、范围分片以及请求分流模块

Nginx学习&#xff1a;安全链接、范围分片以及请求分流模块 又迎来新的模块了&#xff0c;今天的内容不多&#xff0c;但我们都进行了详细的测试&#xff0c;所以可能看起来会多一点哦。这三个模块之前也从来都没用过&#xff0c;但是通过学习之后发现&#xff0c;貌似还都挺有…...

PO模式在selenium自动化测试框架的优势

大家都知道po模式可以提高代码的可读性和减少了代码的重复&#xff0c;但是相对的缺点还有&#xff0c;今天通过本文一起学习下PO模式在selenium自动化测试框架的优势&#xff0c;需要的朋友可以参考下 PO模式简介 1.什么是PO模式 PO模型是:Page Object Model的简写 页面对象…...

Java操作Elasticsearch(新增数据)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...