当前位置: 首页 > news >正文

Java-排序链表问题

Java-排序链表问题

  • 题目
  • 题解
    • 方法:自顶向下归并排序
  • 算法

题目

给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。
示例 1:
在这里插入图片描述
示例 2:
在这里插入图片描述
示例 3:
在这里插入图片描述
提示:

*链表中节点的数目在范围 [0, 5 * 104] 内
*-105 <= Node.val <= 105

进阶:你可以在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序吗?

题解

方法:自顶向下归并排序

对链表自顶向下归并排序的过程如下。

      *找到链表的中点,以中点为分界,将链表拆分成两个子链表。寻找链表的中点可以使用快慢指针的做法,快指针每次移动 2 步,慢指针每次移动 1 步,当快指针到达链表末尾时,慢指针指向的链表节点即为链表的中点。*对两个子链表分别排序。*将两个排序后的子链表合并,得到完整的排序后的链表。可以使用「21. 合并两个有序链表」的做法,将两个有序的子链表进行合并。*上述过程可以通过递归实现。递归的终止条件是链表的节点个数小于或等于 1,即当链表为空或者链表只包含 1 个节点时,不需要对链表进行拆分和排序。

在这里插入图片描述
通过递归实现链表归并排序,有以下两个环节:
1.分割cut环节:找到当前链表中点,并从中点将链表断开(以便在下次递归cut时,链表片段拥有正确的边界);
(1)我们使用fast,slow快慢双指针法,奇数个结点找到中点,偶数个结点找到中心左边的结点。
(2)找到结点slow后,执行slow.next=None将链表切断。
(3)递归分割时,输入当前链表左端点head和中心结点slow的下一个结点tmp(因为链表是从slow切断的)。
(4)cut 递归终止条件:当head.nextNone时,说明只有一个结点,直接返回此结点。
2.合并merge环节:将两个排序链表合并,转化为一个排序链表。
(1)双指针法合并,建立辅助ListNode h作为头部。
(2)设置两指针left,right分别指向两链表头部,比较两指针处节点值的大小,由小到大加入合并链表头部,指针交替前进,直至添加完两个链表。
(3)返回辅助listNode h作为头部的下个结点h.next.
(4)时间复杂度O(1+r),l,r分别代表两个链表长度。
(5)当题目输入的head
None时,直接返回None.

算法

 *///归并排序链表:1.从中间节点处拆分链表   2.通过双指针合并链表
class Solution {public ListNode sortList(ListNode head) {return sortList(head, null);}public ListNode sortList(ListNode head, ListNode tail) {if (head == null) {return head;}if (head.next == tail) { //sortList区间:[head,tail),说明此时区间中只有head一个元素head.next = null;return head;}//找到当前区间的中间节点ListNode slow = head, fast = head;while (fast != tail) {slow = slow.next;fast = fast.next;if (fast != tail) {fast = fast.next;}}ListNode mid = slow;//递归的拆分、合并链表ListNode list1 = sortList(head, mid);//sortList区间:[head,tail)ListNode list2 = sortList(mid, tail);ListNode sorted = merge(list1, list2);return sorted;}//类似于双指针法合并链表public ListNode merge(ListNode head1, ListNode head2) {ListNode dummyHead = new ListNode(0);ListNode temp = dummyHead, temp1 = head1, temp2 = head2;while (temp1 != null && temp2 != null) {if (temp1.val <= temp2.val) {temp.next = temp1;temp1 = temp1.next;} else {temp.next = temp2;temp2 = temp2.next;}temp = temp.next;}if (temp1 != null) {temp.next = temp1;} else if (temp2 != null) {temp.next = temp2;}return dummyHead.next;}
}
}

相关文章:

Java-排序链表问题

Java-排序链表问题题目题解方法&#xff1a;自顶向下归并排序算法题目 给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a; 示例 2&#xff1a; 示例 3&#xff1a; 提示&#xff1a; *链表中节点的数目在范围 [0, 5 * 104]…...

c++之二叉树【进阶版】

前言 在c语言阶段的数据结构系列中已经学习过二叉树&#xff0c;但是这篇文章是二叉树的进阶版&#xff0c;因为首先就会讲到一种树形结构“二叉搜索树”&#xff0c;学习二叉搜索树的目标是为了更好的理解map和set的特性。二叉搜索树的特性就是左子树键值小于根&#xff0c;右…...

【数据库】 SQLServer

SQL Server 安装 配置 修改SQL Server默认的数据库文件保存路径_ 认识 master &#xff1a;是SQL Server中最重要的系统数据 库&#xff0c;存储SQL Server中的元数据。 Model&#xff1a;模板数据库&#xff0c;在创建新的数据库时&#xff0c;SQL Server 将会复制此数据…...

Linux 4.19 内核中 spinlock 概览

Linux内核中 spinlock相关数据结构和代码实现涉及的文件还是挺多的&#xff0c;这篇博客尝试从文件的角度来梳理一下 spinlock的相关数据结构和代码实现&#xff0c;适合想大概了解 Linux内核中 spinlock从上层 API到底层实现间的调用路径和传参变化&#xff0c;尤其适合了解 s…...

TensorFlow 1.x学习(系列二 :1):基本概念TensorFlow的基本介绍,图,会话,会话中的run(),placeholder(),常见的报错

目录1.基本介绍2.图的结构3.会话&#xff0c;会话的run方法4.placeholder5.返回值异常写在前边的话&#xff1a;之前发布过一个关于TensorFlow1.x的转载系列&#xff0c;自己将基本的TensorFlow操作敲了一遍&#xff0c;但是仍然有很多地方理解的不够深入。所以重开一个系列&am…...

javaEE 初阶 — 关于 IPv4、IPv6 协议、NAT(网络地址转换)、动态分配 IP 地址 的介绍

文章目录1. IPv42. IPv63. NAT4. 动态分配 IP 地址1. IPv4 在互联网的世界中只有 0 和1 &#xff0c;所以每个人都有一个由 0 和 1 组成的地址来让别人找到你。 这段由 0 和 1 组成的地址叫 IP 地址&#xff0c;这是互联网的基础资源&#xff0c;可以简单的理解为互联网的土地。…...

《Qt 6 C++开发指南》简介

我们编写的新书《Qt 6 C开发指南》在2月份终于正式发行销售了&#xff0c;这本书是对2018年5月出版的《Qt 5.9 C开发指南》的重磅升级。以下是本书前言的部分内容&#xff0c;算是对《Qt 6 C开发指南》的一个简介。1&#xff0e;编写本书的目的《Qt 5.9C开发指南》是我写的第一…...

CleanMyMac是什么清理软件?及使用教程

你知道CleanMyMac是什么吗&#xff1f;它的字面意思为“清理我的Mac”&#xff0c;作为软件&#xff0c;那就是一款Mac清理工具&#xff0c;Mac OS X 系统下知名系统清理软件&#xff0c;是数以万计的Mac用户的选择。它可以流畅地与系统性能相结合&#xff0c;只需简单的步骤就…...

Linux小黑板(9):共享内存

"My poor lost soul"上章花了不少的篇幅讲了讲基于管道((匿名、命名))技术实现的进程间通信。进程为什么需要通信&#xff1f;目的是为了完成进程间的"协同",提高处理数据的能力、优化业务逻辑的实现等等&#xff0c;在linux中我们已经谈过了一个通信的大类…...

Detr源码解读(mmdetection)

Detr源码解读(mmdetection) 1、原理简要介绍 整体流程&#xff1a; 在给定一张输入图像后&#xff0c;1&#xff09;特征向量提取&#xff1a; 首先经过ResNet提取图像的最后一层特征图F。注意此处仅仅用了一层特征图&#xff0c;是因为后续计算复杂度原因&#xff0c;另外&am…...

一个.Net Core开发的,撑起月6亿PV开源监控解决方案

更多开源项目请查看&#xff1a;一个专注推荐.Net开源项目的榜单 项目发布后&#xff0c;对于我们程序员来说&#xff0c;项目还不是真正的结束&#xff0c;保证项目的稳定运行也是非常重要的&#xff0c;而对于服务器的监控&#xff0c;就是保证稳定运行的手段之一。对数据库、…...

C语言数据结构初阶(2)----顺序表

目录 1. 顺序表的概念及结构 2. 动态顺序表的接口实现 2.1 SLInit(SL* ps) 的实现 2.2 SLDestory(SL* ps) 的实现 2.3 SLPrint(SL* ps) 的实现 2.4 SLCheckCapacity(SL* ps) 的实现 2.5 SLPushBack(SL* ps, SLDataType x) 的实现 2.6 SLPopBack(SL* ps) 的实现 2.7 SLP…...

K8S常用命令速查手册

K8S常用命令速查手册一. K8S日常维护常用命令1.1 查看kubectl版本1.2 启动kubelet1.3 master节点执行查看所有的work-node节点列表1.4 查看所有的pod1.5 检查kubelet运行状态排查问题1.6 诊断某pod故障1.7 诊断kubelet故障方式一1.8 诊断kubelet故障方式二二. 端口策略相关2.1 …...

Linux系统下命令行安装MySQL5.6+详细步骤

1、因为想在腾讯云的服务器上创建自己的数据库&#xff0c;所以我在这里是通过使用Xshell 7来连接腾讯云的远程服务器&#xff1b; 2、Xshell 7与服务器连接好之后&#xff0c;就可以开始进行数据库的安装了&#xff08;如果服务器曾经安装过数据库&#xff0c;得将之前安装的…...

13.STM32超声波模块讲解与实战

目录 1.超声波模块讲解 2.超声波时序图 3.超声波测距步骤 4.项目实战 1.超声波模块讲解 超声波传感器模块上面通常有两个超声波元器件&#xff0c;一个用于发射&#xff0c;一个用于接收。电路板上有4个引脚&#xff1a;VCC GND Trig&#xff08;触发&#xff09;&#xff…...

逆向之Windows PE结构

写在前面 对于Windows PE文件结构&#xff0c;个人认为还是非常有必要掌握和了解的&#xff0c;不管是在做逆向分析、免杀、病毒分析&#xff0c;脱壳加壳都是有着非常重要的技能。但是PE文件的学习又是一个非常枯燥过程&#xff0c;希望本文可以帮你有一个了解。 PE文件结构…...

ACL是什么

目录 一、ACL是什么 二、ACL的使用&#xff1a;setacl与getacl 1&#xff09;针对特定使用者的方式&#xff1a; 1. 创建acl_test1后设置其权限 2. 读取acl_test1的权限 2&#xff09;针对特定群组的方式&#xff1a; 3&#xff09;针对有效权限 mask 的设置方式&#xf…...

操作系统核心知识点整理--内存篇

操作系统核心知识点整理--内存篇按段对内存进行管理内存分区内存分页为什么需要多级页表TLB解决了多级页表什么样的缺陷?TLB缓存命中率高的原理是什么?段页结合: 为什么需要虚拟内存&#xff1f;虚拟地址到物理地址的转换过程段页式管理下程序如何载入内存&#xff1f;页面置…...

从零开始学习iftop流量监控(找出服务器耗费流量最多的ip和端口)

一、iftop是什么iftop是类似于top的实时流量监控工具。作用&#xff1a;监控网卡的实时流量&#xff08;可以指定网段&#xff09;、反向解析IP、显示端口信息等官网&#xff1a;http://www.ex-parrot.com/~pdw/iftop/二、界面说明>代表发送数据&#xff0c;< 代表接收数…...

第一篇博客------自我介绍篇

目录&#x1f506;自我介绍&#x1f506;学习目标&#x1f506;如何学习单片机Part 1 基础理论知识学习Part 2 单片机实践Part 3 单片机硬件设计&#x1f506;希望进入的公司&#x1f506;结束语&#x1f506;自我介绍 Hello!!!我是一名即已经步入大二的计算机小白。 --------…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...