Python基础教程:内置函数之字典函数的使用方法
嗨喽~大家好呀,这里是魔王呐 ❤ ~!
python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取
len(字典名):
返回键的个数,即字典的长度
# len(字典名):
# 返回键的个数,即字典的长度dic = {'a':123,'b':456,'c':789,'d':567}
print(len(dic))
# 4
str(字典名):
将字典转化成字符串
# str(字典名):
# 将字典转化成字符串
dic = {'a':123,'b':456,'c':789,'d':567}
print(str(dic))
# {'a': 123, 'b': 456, 'c': 789, 'd': 567}
type(字典名):
查看字典的类型
'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:926207505
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
# type(字典名):
# 查看字典的类型
dic = {'a':123,'b':456,'c':789,'d':567}
print(type(dic))
# <class 'dict'>
内置方法:
clear( ):
删除字典内所有的元素
# clear( ):
# 删除字典内所有的元素
dic = {'a':123,'b':456,'c':789,'d':567}
dic.clear()
print(dic)
# {}
copy( ):
浅拷贝一个字典
# copy( ):
# 浅拷贝一个字典
dic = {'a':123,'b':456,'c':789,'d':567}
dic_two = dic.copy()
print(dic)
# {'a': 123, 'b': 456, 'c': 789, 'd': 567}
print(dic_two)
# {'a': 123, 'b': 456, 'c': 789, 'd': 567}
fromkeys(seq[,value]):
创建一个新字典,seq作为键,value为字典所有键的初始值(默认为None)
'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:926207505
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
# fromkeys(seq[,value]):
# 创建一个新字典,seq作为键,value为字典所有键的初始值(默认为None)
dic = dict.fromkeys('abcd')
# 默认为 None
print(dic)
# {'a': None, 'b': None, 'c': None, 'd': None}dic = dict.fromkeys('abc',1)
print(dic)
# {'a': 1, 'b': 1, 'c': 1}
get(key,default = None):
返回指定的键的值,如果键不存在,则返会 default 的值
# get(key,default = None):
# 返回指定的键的值,如果键不存在,则返会 default 的值
dic = {'a':1,'b':2,'c':3,'d':4}
print(dic.get('b'))
# 2
print(dic.get('e',5))
# 5
成员运算符 in、not in:
查看 键 是否在字典中
# 成员运算符 in、not in:
# 查看 键 是否在字典中
dic = {'a':1,'b':2,'c':3,'d':4}
print('a' in dic)
# True
print('a' not in dic)
# False
items( ):
返回键值对的可迭代对象,使用 list 可转换为 [(键,值)] 形式
# items( ):
# 以列表返回可遍历的(键值对)元组 的值
dic = {'a':1,'b':2,'c':3,'d':4}
print(dic.items())
# dict_items([('a', 1), ('b', 2), ('c', 3), ('d', 4)])
print(list(dic.items()))
# [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
keys( ):
返回一个迭代器,可以使用 list() 来转换为列表
# keys( ):
# 返回一个迭代器,可以使用 list() 来转换为列表dic = {'a':1,'b':2,'c':3,'d':4}
print(dic.keys())
# dict_keys(['a', 'b', 'c', 'd'])
print(list(dic.keys()))
# ['a', 'b', 'c', 'd']
setdefault(key,default = None):
如果键存在于字典中,则不修改键的值
如果键不存在于字典中,则设置为 default 值
'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:926207505
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
# setdefault(key,default = None):
# 如果键存在,则不修改键的值
dic = {'a':1,'b':2,'c':3,'d':4}
dic.setdefault('a',8)
print(dic)
# {'a': 1, 'b': 2, 'c': 3, 'd': 4}# 如果键不存在于字典中,则设置为 default 值
dic = {'a':1,'b':2,'c':3,'d':4}
dic.setdefault('e',5)
print(dic)
# {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
update(字典对象):
将字典对象更新到字典中
# update(字典对象):
# 将字典对象更新到字典中
dic = {'a':1,'b':2,'c':3,'d':4}
dic_two = {'f':6}
dic.update(dic_two)
print(dic)
# {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'f': 6}
values( ):
返回一个可迭代对象,使用 list 转换为字典中 值 的列表
'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:926207505
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
# values( ):
# 使用 list 转换为字典中 值 的列表
dic = {'a':1,'b':2,'c':3,'d':4}
print(list(dic.values()))
pop(key[,default]):
删除字典中 key 的值,返回被删除的值。key 值如果不给出,则返回default的值
# pop(key[,default]):
# 删除字典中 key 的值,返回被删除的值。key 值如果不给出,则返回default的值
dic = {'a':1,'b':2,'c':3,'d':4}
print(dic.pop('a',6))
# 1 , 返回删除的值
print(dic)
# {'b': 2, 'c': 3, 'd': 4}
print(dic.pop('e','字典中没有该值'))
# 字典中没有该值 , 如果字典中不存在该键,则返回 default 的值
print(dic)
# {'b': 2, 'c': 3, 'd': 4}
popitem( ):
随机返回一个键值对(通常为最后一个),并删除最后一个键值对
# popitem( ):
# 随机返回一个键值对(通常为最后一个),并删除最后一个键值对
dic = {'a':1,'b':2,'c':3,'d':4}
print(dic.popitem())
# ('d', 4)
print(dic)
# {'a': 1, 'b': 2, 'c': 3}
print(dic.popitem())
# ('c', 3)
print(dic)
# {'a': 1, 'b': 2}
尾语
最后感谢你观看我的文章呐~本次航班到这里就结束啦 🛬
希望本篇文章有对你带来帮助 🎉,有学习到一点知识~
躲起来的星星🍥也在努力发光,你也要努力加油(让我们一起努力叭)。
相关文章:

Python基础教程:内置函数之字典函数的使用方法
嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 len(字典名): 返回键的个数,即字典的长度 # len(字典名): # 返回键的个数,即字典的长度dic {a:123,b:456,c:789…...

Pytorch从零开始实战06
Pytorch从零开始实战——明星识别 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——明星识别环境准备数据集模型选择开始训练模型可视化模型预测总结 环境准备 本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1c…...

RT-Thread学习笔记(三):线程管理
线程管理 线程管理相关概念什么是时间片轮转调度器锁线程运行机制线程的五种状态 动态和静态创建线程区别动态和静态创建线程优缺点RT-Thread动态线程管理函数动态创建线程动态删除线程 RT-Thread静态线程管理函数静态创建线程 线程其他操作线程启动线程延时获得当前执行的线程…...

pymysql连接Mariadb/Mysql出现错误(配置正确情况下)解决办法
场景:在kali中使用python中pymysql对Mariadb进行连接,在整个过程中配置全部正确,但是就是无法进行连接,提示结果如下: Access denied for user rootlocalhost解决办法:进入数据库中,将默认密码…...

数据仓库扫盲系列(1):数据仓库诞生原因、基本特点、和数据库的区别
数据仓库的诞生原因 随着互联网的普及,信息技术已经深入到各行各业,并逐步融入到企业的日常运营中。然而,当前企业在信息化建设过程中遇到了一些困境与挑战。 1、历史数据积存。 过去企业的业务系统往往是在较长时间内建设的,很…...

DataX-web安装部署和使用
DataX-web的环境准备 MySQL (5.5) 必选,对应客户端可以选装, Linux服务上若安装mysql的客户端可以通过部署脚本快速初始化数据库 JDK (1.8.0_xxx) 必选 DataX 必选 Python (2.x) (支持Python3需要修改替换datax/bin下面的三个python文件,替换文件在do…...
sqlmap防御以及文件读写
一.防御 过滤 1.使用过滤函数 $email filter_var($_POST[email], FILTER_VALIDATE_EMAIL); if ($email) { // input is a valid email address } else { // input is not a valid email address 使用 filter_var() 函数和 FILTER_VALIDATE_EMAIL 过滤器来验证用户输…...

【源码】C/C++运动会计分系统 期末设计源码
文章目录 题目介绍功能源码效果展示带报告(内容) 题目介绍 使用语言: 两个版本都会发: 版本1:C语言 版本2: C 代码量: 500 题目介绍: 要求:初始化输入:N-参赛…...
Ubuntu安装Docker
卸载官方库中之前的旧版本 sudo apt-get remove docker docker-engine docker-ce docker.io更新安装包列表 sudo apt-get update安装以下包以使apt可以通过HTTPS使用存储库 sudo apt-get install -y apt-transport-https ca-certificates curl software-properties-common添…...
useReducer+createContext真的可以代替Redux吗?
概念 useReducer useReducer 是 React 提供的一个状态管理钩子,通常用于管理组件的复杂状态逻辑。它采用两个参数:reducer 函数和初始状态。Reducer 函数接受当前状态和一个操作(action),并返回一个新的状态。这有点…...
Mysql忘记登入密码找回 方法(超详细)
如果你找不到 MySQL 的安装路径,可以尝试以下几种方法: 检查环境变量:打开命令提示符,并运行以下命令: echo %PATH% 这会显示系统的环境变量。查找其中是否包含 MySQL 相关的路径,例如 C:\Program Files…...

NodeMCU ESP8266 读取按键外部输入信号详解(图文并茂)
NodeMCU ESP8266 读取按键外部输入信号教程(图文并茂) 文章目录 NodeMCU ESP8266 读取按键外部输入信号教程(图文并茂)前言按键输入常用接口pinModedigitalRead 示例代码结论 前言 ESP8266如何检测外部信号的输入,通常…...
Oracle如何插入图片数据?
1、创建表,注意:插入图片的列要定义成BLOB类型 create table image_lob(t_id varchar2(5) not null,t_image blob not null);2、创建图片目录,images为目录名 create or replace directory "images" as f:\pic\;3、创建存储过程&am…...

C++特性——inline内联函数
1. 内联函数 1.1 C语言的宏 在C语言中,我们学习了用#define定义的宏函数,例如: #define Add(x, y) ((x) (y)) //两数相加相较于函数,我们知道宏替换具有如下比较明显的优点: 性能优势: 宏在预处理阶段…...

pensieve运行的经验
1运行run_videopy时出现如下问题: cmd: Union[List[str], str], ^ SyntaxError: invalid syntax原因是EasyProcess版本与python版本不对应,解决办法可见之前这篇博客:SyntaxError: invalid syntax。 2解决完上述问题后,输…...

Qt实现一个电子相册
一、要实现的功能 在窗口中可以显示图片,并且能够通过两个按钮进行图片的前进和后退的顺序切换。有一个按钮,通过这个按钮可以从所存图片资源中随机选取一个图片进行展示通过按钮可以控制图片自动轮播顺序切换的开始与停止,显示当前系统的时…...
R语言:因子分析 factor analysis
文章目录 因子分析数据集处理步骤主成分法做因子分析最大似然法做因子分析因子分析 因子分析的用途与主成分分析类似,它也是一种降维方法。由于因子往往比主成分更易得到解释,故因子分析比主成分分析更容易成功,从而有更广泛的应用。 从方法上来说,因子分析比主成分分析更为…...

SOFAStack软件供应链安全产品解析——SCA软件成分分析
近年来,软件供应链安全相关攻击事件呈快速增长态势,造成的危害也越来越严重,为了保障软件供应链安全,各行业主管单位也出台了诸多政策及技术标准。基于内部多年的实践,蚂蚁数科金融级云原生PaaS平台SOFAStack发布完整的…...
vue中ElementUi的el-table表格绑定行点击事件
<el-table v-loading"loading" :data"messagesList" row-click"goToMassage">handleRowClick(row, event, column) {// 在这里处理行点击事件console.log(行点击事件:, row, event, column);}...

力扣:盛最多水的容器
题目 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你不能倾斜容器。 …...
【NLP】 38. Agent
什么是 Agent? 一个 Agent 就是能够 理解、思考,并且进行世界交互 的模型系统,并不是纯粹的 prompt 返回器。 它可以: 读取外部数据(文件/API)使用记忆进行上下文维持用类Chain-of-Thought (CoT)方式进行…...

自然语言处理——语言模型
语言模型 n元文法参数估计数据平滑方法加1法 神经网络模型提出原因前馈神经网络(FNN)循环神经网络 n元文法 大规模语料库的出现为自然语言统计处理方法的实现提供了可能,统计方法的成功应用推动了语料库语言学的发展。 语句 𝑠 …...
如何写一篇基于Spring Boot + Vue + 微信小程序的软件的接口文档
如何写一篇基于Spring Boot Vue 微信小程序的软件的接口文档 下面是一个例子,仅供参考! 基于Spring Boot Vue 微信小程序的博客系统接口文档 技术栈:Spring Boot 3.x Vue 3 Element Plus 微信小程序原生框架 文档版本:v1…...

【RTSP从零实践】1、根据RTSP协议实现一个RTSP服务
😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...

React 新项目
使用git bash 创建一个新项目 建议一开始就创建TS项目 原因在Webpack中改配置麻烦 编译方法:ts compiler 另一种 bable 最好都配置 $ create-react-app cloundmusic --template typescript 早期react项目 yarn 居多 目前npm包管理居多 目前pnpm不通用 icon 在public文件夹中…...

Facebook接入说明
Facebook 原生 Messenger 聊天消息接入到一洽对话中 1、创建 Facebook 主页 进入 https://www.facebook.com/pages/create 页面根据提示创建主页(如果已经有待用主页,可跳过) 2、授权对话权限 1、向您的一洽负责人获取 Facebook 授权链接 2、…...

Grafana 地图本土化方案:使用高德地图API平替GeoMap地图指南
[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] 📢 大家好,我是 WeiyiGeek,一名深耕安全运维开发(SecOpsDev)领域的技术从业者,致力于探索DevOps与安全的融合(De…...
LLM基础2_语言模型如何文本编码
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 字节对编码(BPE) 上一篇博文说到 为什么GPT模型不需要[PAD]和[UNK]? GPT使用更先进的字节对编码(BPE),总能将词语拆分成已知子词 为什么需要BPE? 简…...

从“人找政策”到“政策找人”:智能退税ERP数字化重构外贸生态
离境退税新政核心内容与外贸企业影响 (一)政策核心变化解析 退税商店网络扩容 新政明确鼓励在大型商圈、旅游景区、交通枢纽等境外旅客聚集地增设退税商店,并放宽备案条件至纳税信用M级企业。以上海为例,静安区计划新增1000家退…...

【原创】基于视觉模型+FFmpeg+MoviePy实现短视频自动化二次编辑+多赛道
AI视频处理系统功能总览 🎯 系统概述 这是一个智能短视频自动化处理系统,专门用于视频搬运和二次创作。系统支持多赛道配置,可以根据不同的内容类型(如"外国人少系列"等)应用不同的处理策略。 Ἵ…...