completablefuture的使用
CompletableFuture使用详解
【Java异常】Variable used in lambda expression should be final or effectively final
CompletableFuture原理与实践-外卖商家端API的异步化
项目描述
项目接口需要从下游多个接口获取数据,并且下游的网络不稳定还会涉及到循环调用下游接口,导致该接口响应异常慢。
其实调用链路如图所示

cf1 ~ cf5 都需要调用下游接口,导致只能按照顺序,依次调用接口。其实可以将,例如cf1,cf2 拆分成两个异步请求,没必要cf2必须等待cf1请求完成才请求。
CompletableFuture 简介
之前使用的是同步模型。在同步调用的场景下,接口耗时长、性能差,接口响应时长T > T1+T2+T3+……+Tn。
利用 CompletableFuture 之后,使用的是异步模型,并行从下游获取数据。
Completable实现了两个接口:Future 和 CompletionStage。
- Future:表示异步计算结果
- CompletionStage:表示异步执行过程中的一个步骤,这个步骤可能是由另外一个 CompletionStage触发的。
随着当前步骤的完成,也可能会触发其他一系列CompletionStage的执行。从而我们可以根据实际业务对这些步骤进行多样化的编排组合,CompletionStage接口正是定义了这样的能力,我们可以通过其提供的thenAppy、thenCompose等函数式编程方法来组合编排这些步骤。
使用教程
具体使用教程可以参考这边文章CompletableFuture原理与实践-外卖商家端API的异步化,描述的十分详细和生动。
项目应用
cf1,cf2由于没有任何依赖,可是需要返回值,故设计为
CompletableFuture<List<xxxDto>> cf1 = CompletableFuture.supplyAsync(() -> {//业务处理if (CollectionUtils.isEmpty(resp.getData())) {//其他线程抛出异常}return resp.getData();
}).exceptionally(ex -> {//主线程处理其他线程抛出的异常
});
cf3,cf5由于依赖 cf1, cf2 ,所以可以通过thenApply、thenAccept、thenCompose等方法来实现
但注意,返回数据类型必须相同。
CompletableFuture<xxxDto> cf3 = cf1.thenApply(result1 -> {//result1为cf1的结果//......return resp.getData();
});
CompletableFuture<xxxDto> cf5 = cf2.thenApply(result2 -> {//result2为cf2的结果//......return resp.getData();
});
cf4,依赖cf1,cf2 ,这种二元依赖可以通过thenCombine等回调来实现
CompletableFuture<String> cf4 = cf1.thenCombine(cf2, (result1, result2) -> {//result1和result2分别为cf1和cf2的结果return "result4";
});
由于cf6依赖cf3,cf4,cf5,这种多元依赖可以通过allOf或anyOf方法来实现,区别是当需要多个依赖全部完成时使用allOf,当多个依赖中的任意一个完成即可时使用anyOf
CompletableFuture<Void> cf6 = CompletableFuture.allOf(cf3, cf4, cf5);
CompletableFuture<String> result = cf6.thenApply(v -> {//这里的join并不会阻塞,因为传给thenApply的函数是在CF3、CF4、CF5全部完成时,才会执行 。result3 = cf3.join();result4 = cf4.join();result5 = cf5.join();//根据result3、result4、result5组装最终result;return "result";
});
需注意,如果cfx里用到方法的局部变量需要设置为final,避免completablefuture在使用该变量的时候被修改。
设计思想
按照类似 “观察者模式” 的设计思想
异步化收益
接口响应从 TP99=3s左右,提升到2s左右
相关文章:
completablefuture的使用
CompletableFuture使用详解 【Java异常】Variable used in lambda expression should be final or effectively final CompletableFuture原理与实践-外卖商家端API的异步化 项目描述 项目接口需要从下游多个接口获取数据,并且下游的网络不稳定还会涉及到循环调用…...
51单片机的时钟系统
1.简介 51内置的时钟系统可以用来计时,与主程序分割开来,在计时过程中不会终端主程序,还可以通过开启时钟中断来执行相应的操作。 2.单片机工作方式 单片机内部有两个十六位的定时器T0和T1。每个定时器有两种工作方式选择,分别…...
神经网络的问题总结
神经网络目前可以分为以下几类问题,每类问题都有其特点和不断取得的进展: 分类问题: 特点:在给定一组数据点的情况下,将它们分为不同的类别。进展:神经网络在图像分类、文本分类、音频分类等方面取得了显著…...
树莓派图像处理基础知识
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、基本函数1. cvtColor(src,tmp,COLOR_BGR2RGB);2.在OpenCV和Qt中,转换cv::Mat到QImage3.Canny(tmp,dst,30,255);4.dst matframe.clone();5.video…...
Kotlin中的Lambda表达式基本定义和使用
在Kotlin中,Lambda表达式是一种简洁的方式来定义匿名函数。Lambda表达式可以作为函数的实际参数或者返回值,使得函数成为高阶函数。本篇博客将介绍Lambda表达式的基本概念以及使用方法,并提供相关的示例代码。 Lambda表达式的基本概念 Lamb…...
递福巴士是不是骗局呢?
递福巴士的背景介绍 递福巴士是社区服务机构软件。递福巴士是一家提供公益服务的平台,为社区居民提供各种服务和支持的软件。多年来,递福巴士一直致力于社区服务和社会公益,积极推动社区的发展,改善社区居民的生活质量。 递福巴士…...
torch.Size([])与torch.Size([0])的区别
在PyTorch中,torch.Size([])和torch.Size([0])都表示一个空的维度(dimension)。然而,它们之间有微妙的区别。 torch.Size([]): 表示一个标量(scalar),即一个没有维度的张量。这个张量…...
DP基础相关笔记
基础 DP LIS LIS(Longest Increasing Subsequence),顾名思义,就是最长上升子序列问题。 在这里我们要区分一下子串和子序列的区别,很简单,子串连续,子序列可以不连续。然而就在几小时之前本蒟…...
配置公网和私网用户通过非公网口的IP地址访问内部服务器和Internet示例
组网需求 如配置公网和私网用户通过非公网口的IP地址访问内部服务器和Internet示例所示,某小型企业内网部署了一台路由器、一台FTP服务器和一台Web服务器。路由器作为接入网关,为下挂的内网用户提供上网服务,主要包括浏览网页、使用即时通信…...
相机镜头选择与机器视觉控制
相机镜头选择与机器视觉控制 在机器视觉领域,除了图像处理和算法,还需要关注硬件方面的选型和控制。相机镜头的选择是其中重要的一部分,需要考虑像素大小、镜头焦距等因素以满足项目需求。此外,编程技能也包括相机的调用和使用&a…...
Git 为文件添加执行权限
背景 当你是一台Linux,想要给文件加权限很简单,只需要执行以下命令 chmod x filename就可以给文件添加执行权限,但是如果你是Windows那就很麻烦了 解决方案 假设这里有一个名为 file.sh 的文件,内容如下: #!/bin/…...
问题记录:GPU显卡提高后,代码总体运行效率没有提高
问题:GPU显卡提高后,代码总体运行效率没有提高 原先显卡NIVIDA T400换成NVIDIA RTX A4000,CUDA核心(物理GPU线程单位)从三百多提升到了六千多,但是程序总体运行的时间没有变化。 原因分析 显卡没用上或者…...
Reparameterization trick(重参数化技巧)
“Reparameterization trick”(重参数化技巧)是一种在训练生成模型中处理随机性潜在变量的方法,特别常见于变分自动编码器(VAE)等模型中。这个技巧的目的是使模型可微分(differentiable)&#x…...
Kotlin中的可空类型
在 Kotlin 中,可空类型是一项重要的特性,它允许我们声明变量可以为空。在本篇博客中,我们将介绍 Kotlin 中的可空类型,并提供示例代码演示如何处理可空变量、使用安全调用操作符(?.)、Elvis 运算符&#x…...
数学建模——最大流问题(配合例子说明)
目录 一、最大流有关的概念 例1 1、容量网络的定义 2、符号设置 3、建立模型 3.1 每条边的容量限制 3.2 平衡条件 3.3 网络的总流量 4、网络最大流数学模型 5、计算 二、最小费用流 例2 【符号说明】 【建立模型】 (1)各条边的流量限制 &a…...
AAOS CarMediaService 服务框架
文章目录 前言MediaSessionCarMediaService作用是什么?提供了哪些接口?如何使用?CarMediaService的实现总结 前言 CarMediaService 是AAOS中统一管理媒体播放控制、信息显示和用户交互等功能的服务。这一服务依赖于android MediaSession框架…...
gRPC之gRPC转换HTTP
1、gRPC转换HTTP 我们通常把RPC用作内部通信,而使用Restful Api进行外部通信。为了避免写两套应用,我们使用grpc- gateway 把gRPC转成HTTP。服务接收到HTTP请求后,grpc-gateway把它转成gRPC进行处理,然后以JSON 形式返回数据。…...
【十四】记一次MySQL宕机恢复过程,MySQL INNODB 损坏恢复
记一次MySQL宕机恢复过程 简介:一个业务数据库疏于运维管理,突然在今天崩溃宕机了,真是让人抓狂,上面也不知道积累了多久的数据,平时也没有定期做好备份,这下岂不是瞎了啊,经过不断的收集信息和…...
从0开始在Vscode中搭建Vue2/3项目详细步骤
1.安装node.js:Node.js下载安装及环境配置教程【超详细】_nodejs下载_WHF__的博客-CSDN博客 node.js自带npm,无需单独安装。 验证: node -v npm -v 2.先简单创建一个空文件夹,vscode进入该文件夹,并打开终端。 3.安装cnpm&…...
JavaScript ES6类的定义与继承
文章目录 一、class方式定义类1.认识class定义类2.类和构造函数的异同3.类的构造函数4.类的实例方法5.类的访问器方法6.类的静态方法 二、继承1.extends实现继承2.super关键字3.继承内置类4.类的混入mixin 三、ES6转ES51.class转换2.extends转换 四、多态 一、class方式定义类 …...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
