当前位置: 首页 > news >正文

在pytorch中对于张量维度的理解

原文参考链接
https://blog.csdn.net/qq_36930921/article/details/121670945.
https://zhuanlan.zhihu.com/p/356951418
张量的计算:https://zhuanlan.zhihu.com/p/140260245
学习过程中对知识的补充学习,谨防原文失效,请大家支持原创

神经网络的数据显示:

  1. 使用的数据存储在多维Numpy数组中,也叫张量(tensor)。一般来说,当前所有机器学习系统都使用张量作为基本数据结构。张量对这个领域非常重要,重要到Google的TensorFlow都以他来命名。那么什么是张量?
  2. 张量这一概念的核心在于,它是一个数据容器。它包含的数据几乎总是数值数据,因此它是数字的容器。你可能对矩阵很熟悉,它是二维张量。张量是矩阵向任意维度的推广注意,张量的维度(dimension)通常叫作轴(axis)]。

1.1标量(0D张量)

仅包含一个数字的张量叫作标量(scalar,也叫标量张量、零维张量、0D 张量)。在 Numpy中,一个 float32 或 float64 的数字就是一个标量张量(或标量数组)。你可以用 ndim 属性来查看一个 Numpy 张量的轴的个数。标量张量有 0 个轴( ndim == 0 )。张量轴的个数也叫作阶(rank)。下面是一个 Numpy 标量。

import numpy as np
x = np.array(12)
print(x.ndim)
x
>>>运行结果:
>>>0
>>>array(12)

1.2 向量(1D 张量)

数字组成的数组叫作向量(vector)或一维张量(1D 张量)。一维张量只有一个轴。下面是一个 Numpy 向量。

import numpy as np
x = np.array([12, 3, 6, 14, 7])
print(x.ndim)
x
>>>运行结果:
>>>1
>>>array([12,3,6,14,7])

这个向量有 5 个元素,所以被称为 5D 向量。不要把 5D 向量和 5D 张量弄混! 5D 向量只有一个轴,沿着轴有 5 个维度,而 5D 张量有 5 个轴(沿着每个轴可能有任意个维度)。维度(dimensionality)可以表示沿着某个轴上的元素个数(比如 5D 向量),也可以表示张量中轴的个数(比如 5D 张量),这有时会令人感到混乱。对于后一种情况,技术上更准确的说法是 5 阶张量(张量的阶数即轴的个数),但 5D 张量这种模糊的写法更常见。

1.3矩阵(2D张量)

① 向量组成的数组叫作矩阵(matrix)或二维张量(2D 张量)。矩阵有 2 个轴(通常叫作行和列)。你可以将矩阵直观地理解为数字组成的矩形网格。下面是一个 Numpy 矩阵。

import numpy as np
x = np.array([[5, 78, 2, 34, 0],[6, 79, 3, 35, 1],[7, 80, 4, 36, 2]])
print(x.ndim)
>>>数据结果
>>>2

1.4 3D 张量与更高维张量

将多个矩阵组合成一个新的数组,可以得到一个 3D 张量,你可以将其直观地理解为数字组成的立方体。下面是一个 Numpy 的 3D 张量。

import numpy as np
x = np.array([[[5, 78, 2, 34, 0],[6, 79, 3, 35, 1],[7, 80, 4, 36, 2]],[[5, 78, 2, 34, 0],[6, 79, 3, 35, 1],[7, 80, 4, 36, 2]],[[5, 78, 2, 34, 0],[6, 79, 3, 35, 1],[7, 80, 4, 36, 2]]])
print(x.ndim)>>>数据结果
>>>3

将多个 3D 张量组合成一个数组,可以创建一个 4D 张量,以此类推。深度学习处理的一般是 0D 到 4D 的张量,但处理视频数据时可能会遇到 5D 张量。

1.5关键属性

张量是由以下三个关键属性来定义的。

  1. 轴的个数(阶)。例如,3D 张量有 3 个轴,矩阵有 2 个轴。这在 Numpy 等 Python 库中也叫张量的 ndim 。
  2. 形状。这是一个整数元组,表示张量沿每个轴的维度大小(元素个数)。例如,前面矩阵示例的形状为 (3, 5) ,3D 张量示例的形状为
    (3, 3, 5) 。向量的形状只包含一个元素,比如 (5,) ,而标量的形状为空,即 () 。
  3. 数据类型(在 Python 库中通常叫作 dtype )。这是张量中所包含数据的类型,例如,张量的类型可以是 float32 、 uint8 、 float64 等。在极少数情况下,你可能会遇到字符( char )张量。注意,Numpy(以及大多数其他库)中不存在字符串张量,因为张量存储在预先分配的连续内存段中,而字符串的长度是可变的,无法用这种方式存储。

1.6现实世界中的数据张量

我们用几个你未来会遇到的示例来具体介绍数据张量。你需要处理的数据几乎总是以下类别之一。

  1. 向量数据:2D 张量,形状为 (samples, features) 。
  2. 时间序列数据或序列数据:3D 张量,形状为 (samples, timesteps, features) 。
  3. 图像:4D张量,形状为 (samples, height, width, channels) 或 (samples,
    channels,height, width) 。
  4. 视频:5D张量,形状为 (samples, frames, height, width, channels) 或
    (samples,frames, channels, height, width) 。

1.7如何判断张量的batch数、行、列、深度

从左边开始数连续[的数量,最多有X个[说明是X维张量。上面的例子就是4维张量。

shape属性中的元素大于等于3时,可以用3维空间来理解。
shape=(3, 4, 2)时,表示3个4行2列的张量
shape=(2, 3, 4, 2)时,表示有2个 3行4列深度为2的张量
shape=(6, 2, 3, 4, 2)时,表示有6个四维张量,这个四维张量又可以表示为2个 3行4列深度为2的张量。

——————————————————————————————

例如:

张量的阶数有时也称维度,或者轴axis。比如矩阵[[1,2],[3,4]],是一个二维张量。

  • 沿着第0个轴(axis=0)可以看到[1,2],[3,4]两个向量
  • 沿着第1个轴(axis=1)可以看到[1,3],[2,4]两个向量。
    在这里插入图片描述
    一维向量:
const1 = tf.constant([1,2,3,4],tf.float16)

二维张量:

# 三行四列
const2 = tf.constant([[1,2,3,4],[5,6,7,8],[9,10,11,12]
],tf.float16)

几何表示:
在这里插入图片描述
三维张量:

# 3行4列深度为2
const3 = tf.constant([[[1,2],[3,4],[5,6],[7,8]],[[11, 12], [13, 14], [15, 16], [17, 18]],[[21, 22], [23, 24], [25, 26], [27, 28]]
],tf.float16)
shape = (3,4,2)

几何表示:
在这里插入图片描述
四维张量 (仅用于理解,坐标系已经不再适用)

# 3行4列深度为2
const3 = tf.constant([#第一个3行4列深度为2的三维张量[[[1,2],[3,4],[5,6],[7,8]],[[11, 12], [13, 14], [15, 16], [17, 18]],[[21, 22], [23, 24], [25, 26], [27, 28]]],#第二个3行4列深度为2的三维张量[[[1,2],[3,4],[5,6],[7,8]],[[11, 12], [13, 14], [15, 16], [17, 18]],[[21, 22], [23, 24], [25, 26], [27, 28]]]
],tf.float16)
shape = (2,3,4,2)

几何表示:
在这里插入图片描述

————————————————————————————

图像数据

① 图像通常具有三个维度:高度、宽度和颜色深度。虽然灰度图像(比如 MNIST 数字图像)只有一个颜色通道,因此可以保存在 2D 张量中,但按照惯例,图像张量始终都是 3D 张量,灰度图像的彩色通道只有一维。因此,如果图像大小为 256×256,那么 128 张灰度图像组成的批量可以保存在一个形状为 (128, 256, 256, 1) 的张量中,而 128 张彩色图像组成的批量则可以保存在一个形状为 (128, 256, 256, 3) 的张量中。

② 图像张量的形状有两种约定:通道在后(channels-last)的约定(在 TensorFlow 中使用)和通道在前(channels-first)的约定(在 Theano 中使用)。Google 的 TensorFlow 机器学习框架将颜色深度轴放在最后: (samples, height, width, color_depth) 。与此相反,Theano将图像深度轴放在批量轴之后: (samples, color_depth, height, width) 。如果采用 Theano 约定,前面的两个例子将变成 (128, 1, 256, 256) 和 (128, 3, 256, 256) 。Keras 框架同时支持这两种格式。

视频数据

① 视频数据是现实生活中需要用到 5D 张量的少数数据类型之一。视频可以看作一系列帧,每一帧都是一张彩色图像。由于每一帧都可以保存在一个形状为 (height, width, color_depth) 的 3D 张量中,因此一系列帧可以保存在一个形状为 (frames, height, width,color_depth) 的 4D 张量中,而不同视频组成的批量则可以保存在一个 5D 张量中,其形状为(samples, frames, height, width, color_depth) 。

② 举个例子,一个以每秒 4 帧采样的 60 秒 YouTube 视频片段,视频尺寸为 144×256,这个视频共有 240 帧。4 个这样的视频片段组成的批量将保存在形状为 (4, 240, 144, 256, 3)的张量中。总共有 106 168 320 个值!如果张量的数据类型( dtype )是 float32 ,每个值都是32 位,那么这个张量共有 405MB。好大!你在现实生活中遇到的视频要小得多,因为它们不以float32 格式存储,而且通常被大大压缩,比如 MPEG 格式。

时间序列数据或序列数据

① 当时间(或序列顺序)对于数据很重要时,应该将数据存储在带有时间轴的 3D 张量中。每个样本可以被编码为一个向量序列(即 2D 张量),因此一个数据批量就被编码为一个 3D 张量(见下图)

在这里插入图片描述
② 根据惯例,时间轴始终是第 2 个轴(索引为 1 的轴)。我们来看几个例子。

  1. 股票价格数据集。每一分钟,我们将股票的当前价格、前一分钟的最高价格和前一分钟的最低价格保存下来。因此每分钟被编码为一个 3D
    向量,整个交易日被编码为一个形状为 (390, 3) 的 2D 张量(一个交易日有 390 分钟),而 250
    天的数据则可以保存在一个形状为 (250, 390, 3) 的 3D 张量中。这里每个样本是一天的股票数据。
  2. 推文数据集。我们将每条推文编码为 280 个字符组成的序列,而每个字符又来自于128个字符组成的字母表。在这种情况下,每个字符可以被编码为大小为 128 的二进制向量(只有在该字符对应的索引位置取值为1,其他元素都为 0)。那么每条推文可以被编码为一个形状为 (280, 128) 的 2D 张量,而包含 100万条推文的数据集则可以存储在一个形状为 (1000000, 280, 128) 的张量中。

相关文章:

在pytorch中对于张量维度的理解

原文参考链接: https://blog.csdn.net/qq_36930921/article/details/121670945. https://zhuanlan.zhihu.com/p/356951418 张量的计算:https://zhuanlan.zhihu.com/p/140260245 学习过程中对知识的补充学习,谨防原文失效,请大家支…...

JAVA高级教程Java HashMap表达式(7)

目录 7、HashMap的使用students类 7、HashMap的使用 students类 package Map01;import java.util.Objects ;public class Students implements Comparable<Students>{private String name;private int stuNO;public Students() {}public Students(String age, int stuN…...

【iOS】JSON解析

JSON在Web开发和网络通信和传输中广泛应用&#xff0c;常用于存储和传输数据&#xff0c;这些数据一般也都是JSON格式&#xff0c;可以说绝大多数网络请求传输的数据都是JSON格式 在之前有关网络请求文章中&#xff0c;实现了网络数据加载流程&#xff0c;并对加载下来的JSON数…...

华为OD 最大差(100分)【java】A卷+B卷

华为OD统一考试A卷+B卷 新题库说明 你收到的链接上面会标注A卷还是B卷。目前大部分收到的都是B卷。 B卷对应20022部分考题以及新出的题目,A卷对应的是新出的题目。 我将持续更新最新题目 获取更多免费题目可前往夸克网盘下载,请点击以下链接进入: 我用夸克网盘分享了「华为O…...

打印新闻标题,使用封装get、set方法,打印前15个字符串

package day21; import java.util.ArrayList; import java.util.Collections;/*** author monian* Wo yi wu ta,wei shou shu er!*/ public class Homework01 {SuppressWarnings({"all"})public static void main(String[] args) {News news1 new News("新冠确…...

FL Studio21中文版本好用吗?值不值得下载

今天&#xff0c;我从一个FL Studio忠实且还算资深的用户角度&#xff0c;来为大家深度介绍并评测一下FL Studio的性能以及我四年的使用感受。 FL Studio是一款集剪辑、编曲、录音、混音一体的全能DAW&#xff08;数字音频工作站&#xff09;。其所有界面都是支持100%矢量化的…...

微信小程序进阶——Flex弹性布局轮播图会议OA项目(首页)

目录 一、Flex弹性布局 1.1 什么是Flex弹性布局 1.1.1 详解 1.1.2 图解 1.1.3 代码演示效果 1.2 Flex弹性布局的核心概念 1.3 Flex 弹性布局的常见属性 1.4 Flex弹性布局部分属性详解 1.4.1 flex-direction属性 1.4.2 flex-wrap属性 1.4.3 flex-flow属性 1.4.4 ju…...

工程监测仪器振弦传感器信号转换器在桥梁安全监测中的重要性

工程监测仪器振弦传感器信号转换器在桥梁安全监测中的重要性 桥梁是人类社会建设过程中最重要的交通基础设施之一&#xff0c;对于保障人民出行、促进经济发展具有极其重要的作用。由于桥梁结构在长期使用过程中受到环境因素和负荷的影响&#xff0c;会逐渐发生变形和损伤&…...

ArduPilot开源飞控之AP_OpticalFlow

ArduPilot开源飞控之AP_OpticalFlow 1. 源由2. 框架设计2.1 启动代码2.2 任务代码 update2.3 任务代码 handle_msg2.4 任务代码 handle_msp2.5 任务代码 do_aux_function 3. 重要例程3.1 AP_OpticalFlow3.2 init3.3 update3.4 handle_msg3.5 handle_msp3.6 start_calibration3.…...

RHCE8 资料整理(二)

RHCE8 资料整理 第二篇 用户及权限管理第8章 用户管理8.1 基本概念8.2 管理用户8.2.1 创建用户8.2.2 修改用户属性 8.3 用户的密码策略8.4 用户授权8.5 重置root密码 第9章 权限管理9.1 所有者和所属组9.2 查看及修改权限9.3 数字权限9.4 默认权限9.5 特殊权限9.6 隐藏权限 第1…...

pytest合集(11)— conftest.py文件

1、conftest.py文件 conftest.py文件是pytest框架中的一个特殊文件&#xff0c;用于定义共享的设置、夹具(fixture)和钩子函数&#xff08;hook&#xff09;。 在pytest中&#xff0c;conftest.py文件可以用于在整个测试项目中共享夹具、配置和钩子函数。通过在conftest.py文…...

completablefuture的使用

CompletableFuture使用详解 【Java异常】Variable used in lambda expression should be final or effectively final CompletableFuture原理与实践-外卖商家端API的异步化 项目描述 项目接口需要从下游多个接口获取数据&#xff0c;并且下游的网络不稳定还会涉及到循环调用…...

51单片机的时钟系统

1.简介 51内置的时钟系统可以用来计时&#xff0c;与主程序分割开来&#xff0c;在计时过程中不会终端主程序&#xff0c;还可以通过开启时钟中断来执行相应的操作。 2.单片机工作方式 单片机内部有两个十六位的定时器T0和T1。每个定时器有两种工作方式选择&#xff0c;分别…...

神经网络的问题总结

神经网络目前可以分为以下几类问题&#xff0c;每类问题都有其特点和不断取得的进展&#xff1a; 分类问题&#xff1a; 特点&#xff1a;在给定一组数据点的情况下&#xff0c;将它们分为不同的类别。进展&#xff1a;神经网络在图像分类、文本分类、音频分类等方面取得了显著…...

树莓派图像处理基础知识

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、基本函数1. cvtColor(src,tmp,COLOR_BGR2RGB);2.在OpenCV和Qt中&#xff0c;转换cv::Mat到QImage3.Canny(tmp,dst,30,255);4.dst matframe.clone();5.video…...

Kotlin中的Lambda表达式基本定义和使用

在Kotlin中&#xff0c;Lambda表达式是一种简洁的方式来定义匿名函数。Lambda表达式可以作为函数的实际参数或者返回值&#xff0c;使得函数成为高阶函数。本篇博客将介绍Lambda表达式的基本概念以及使用方法&#xff0c;并提供相关的示例代码。 Lambda表达式的基本概念 Lamb…...

递福巴士是不是骗局呢?

递福巴士的背景介绍 递福巴士是社区服务机构软件。递福巴士是一家提供公益服务的平台&#xff0c;为社区居民提供各种服务和支持的软件。多年来&#xff0c;递福巴士一直致力于社区服务和社会公益&#xff0c;积极推动社区的发展&#xff0c;改善社区居民的生活质量。 递福巴士…...

torch.Size([])与torch.Size([0])的区别

在PyTorch中&#xff0c;torch.Size([])和torch.Size([0])都表示一个空的维度&#xff08;dimension&#xff09;。然而&#xff0c;它们之间有微妙的区别。 torch.Size([])&#xff1a; 表示一个标量&#xff08;scalar&#xff09;&#xff0c;即一个没有维度的张量。这个张量…...

DP基础相关笔记

基础 DP LIS LIS&#xff08;Longest Increasing Subsequence&#xff09;&#xff0c;顾名思义&#xff0c;就是最长上升子序列问题。 在这里我们要区分一下子串和子序列的区别&#xff0c;很简单&#xff0c;子串连续&#xff0c;子序列可以不连续。然而就在几小时之前本蒟…...

配置公网和私网用户通过非公网口的IP地址访问内部服务器和Internet示例

组网需求 如配置公网和私网用户通过非公网口的IP地址访问内部服务器和Internet示例所示&#xff0c;某小型企业内网部署了一台路由器、一台FTP服务器和一台Web服务器。路由器作为接入网关&#xff0c;为下挂的内网用户提供上网服务&#xff0c;主要包括浏览网页、使用即时通信…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...