iOS使用CoreML运用小型深度神经网络架构对图像进行解析
查找一个图片选择器
我用的是ImagePicker
项目有点老了,需要做一些改造,下面是新的仓库
platform :ios, '16.0'use_frameworks!target 'learnings' dosource 'https://github.com/CocoaPods/Specs.git'pod 'ImagePicker', :git => 'https://github.com/KevinSnoopy/ImagePicker.git'end
接下来就是使用图片选择器输出图片了
func wrapperDidPress(_ imagePicker: ImagePicker.ImagePickerController, images: [UIImage]) {}func doneButtonDidPress(_ imagePicker: ImagePicker.ImagePickerController, images: [UIImage]) {if !images.isEmpty, let _ = images.first {/**在这里输出图片,可以调用模型进行解析*/}}func cancelButtonDidPress(_ imagePicker: ImagePicker.ImagePickerController) {imagePicker.dismiss(animated: true)}
当前我使用了几个公开的模型
FCRN:
/**深度估计根据一幅图像来预测深度。*/func fcrnDepthPrediction(image: UIImage?) {let config = MLModelConfiguration()config.computeUnits = .allif let img = image?.cgImage, let fcrn = try? FCRN(contentsOf: FCRN.urlOfModelInThisBundle, configuration: config) {if let input = try? FCRNInput(imageWith: img), let output = try? fcrn.prediction(input: input) {print(output.depthmapShapedArray)}}}
MNISTClassifier:
/**涂鸦分类对单个手写数字进行分类 (支持数字 0-9)。*/func mnistClassifier(image: UIImage?) {if let img = image?.cgImage, let mnist = try? MNISTClassifier(contentsOf: MNISTClassifier.urlOfModelInThisBundle, configuration: MLModelConfiguration()) {if let input = try? MNISTClassifierInput(imageWith: img), let output = try? mnist.prediction(input: input) {print(output.classLabel)print(output.labelProbabilities)}}}
UpdatableDrawingClassifier:
/**涂鸦分类基于 K-最近邻算法(KNN)模型来学习识别新涂鸦的涂鸦分类器。*/func updatableDrawingClassifier(image: UIImage?) {if let img = image?.cgImage, let updatable = try? UpdatableDrawingClassifier(contentsOf: UpdatableDrawingClassifier.urlOfModelInThisBundle, configuration: MLModelConfiguration()) {if let input = try? UpdatableDrawingClassifierInput(drawingWith: img), let output = try? updatable.prediction(input: input) {print(output.label)print(output.labelProbs)}}}
MobileNetV2:
/**图像分类MobileNetv2 架构经过训练,可对相机取景框内或图像中的主要对象进行分类。*/func mobileNetV2(image: UIImage?) {if let img = image?.cgImage, let netv2 = try? MobileNetV2(contentsOf: MobileNetV2.urlOfModelInThisBundle, configuration: MLModelConfiguration()) {if let input = try? MobileNetV2Input(imageWith: img), let output = try? netv2.prediction(input: input) {print(output.classLabel)print(output.classLabelProbs)}}}
Resnet50:
/**图像分类一种残差神经网络,它能对相机取景框内或图像中的主要对象进行分类。*/func resnet50(image: UIImage?) {if let img = image?.cgImage, let resnet = try? Resnet50(contentsOf: Resnet50.urlOfModelInThisBundle, configuration: MLModelConfiguration()) {if let input = try? Resnet50Input(imageWith: img), let output = try? resnet.prediction(input: input) {print(output.classLabel)print(output.classLabelProbs)}}}
SqueezeNet:
/**图像分类一种小型深度神经网络架构,它能对相机取景框内或图像中的主要对象进行分类。*/func squeezeNet(image: UIImage?) {if let img = image?.cgImage, let net = try? SqueezeNet(contentsOf: SqueezeNet.urlOfModelInThisBundle, configuration: MLModelConfiguration()) {if let input = try? SqueezeNetInput(imageWith: img), let output = try? net.prediction(input: input) {print(output.classLabel)print(output.classLabelProbs)}}}
相关文章:
iOS使用CoreML运用小型深度神经网络架构对图像进行解析
查找一个图片选择器 我用的是ImagePicker 项目有点老了,需要做一些改造,下面是新的仓库 platform :ios, 16.0use_frameworks!target learnings dosource https://github.com/CocoaPods/Specs.gitpod ImagePicker, :git > https://github.com/KevinS…...

使用Python打造微信高效自动化操作教程
引言 在如今数字化时代,人们对于效率的追求越来越强烈,尤其是在工作和学习中。自动化操作成为了提高生产力的有效途径之一,而PyAutoGUI和Pyperclip作为Python中的两个强大库,为我们实现自动化操作提供了便利。本文将向大家介绍如…...

怎么在爬虫中使用ip代理服务器,爬虫代理IP的好处有哪些?
随着互联网的快速发展,网络爬虫已经成为数据采集、分析和整理的重要工具。然而,随着网络技术的不断发展,许多网站都会采取反爬虫措施,以避免数据被恶意获取。在这种情况下,代理IP服务器就成为了爬虫们的必本备文工将具…...

Typora的相关配置(Typora主题、字体、快捷键、习惯)
Typora的相关配置(Typora主题、字体、快捷键、习惯) 文章目录 Typora的相关配置(Typora主题、字体、快捷键、习惯)[toc]一、主题配置二、字体配置查看字体名称是否可以被识别:如果未能正确识别: 三、习惯配置四、快捷键配置更改提供的功能的快捷键&#…...

守护进程深度分析
思考 代码中创建的会话,如何关联控制终端? 新会话关联控制终端的方法 会话首进程成功打开终端设备 (设备打开前处于空闲状态) 1、关闭标准输入输出和标准错误输出2、将 stdin 关联到终端设备:STDIN_FILENO > 03、将 stdout 关联到终端设…...

SpringAMQP
SpringAMQT RabbitMQ安装与部署RabbitMQ结构简单队列模型 SpringAMQP依赖引入配置RabbitMQ连接信息基本模型简单队列模型WorkQueue模型 发布订阅模型FanoutExchangeDirectExchangeTopicExchange 消息转换器 消息队列是实现异步通讯的一种方式,我们将从RabbitMQ为例开…...

深入探索Sharding JDBC:分库分表的利器
随着互联网应用的不断发展和用户量的不断增加,传统的数据库在应对高并发和大数据量的场景下面临着巨大的挑战。为了解决这一问题,分库分表成为了一个非常流行的方案。分库分表主流的技术包括MyCat和Sharding JDBC。我们来通过一张图来了解这两者有什么区…...

Java后端模拟面试 题集④
1.你先作个自我介绍吧 面试官您好,我叫张睿超,来自湖南长沙,大学毕业于湖南农业大学,是一名智能科学与技术专业的统招一本本科生。今天主要过来面试贵公司的Java后端开发工程师岗位。 大学里面主修的课程是Java、Python、数字图…...
中国5G产业全景图谱报告2022_挚物AIoT产业研究院
中国5G产业全景图谱报告2022_挚物AIoT产业研究院 产业结构 5G 产业结构主要包括接入网、传输网、核心网、电信运营商、网络配套服务商、5G 应用生态及产业服务 7 个主要板块。根据各版块中主要市场参与者提供的产品和服务,又下分子版块。 (1ÿ…...

设计链表复习
设计链表 class ListNode {int val;ListNode next;public ListNode() {}public ListNode(int val) {this.val val;}public ListNode(int val, ListNode next) {this.val val;this.next next;}}class MyLinkedList {//size存储链表元素的个数int size;//虚拟头节点ListNode…...

在 Visual Studio Code (VS Code) 中设置
在 Visual Studio Code (VS Code) 中设置代理服务器的详细教程如下: 打开 Visual Studio Code。 在顶部菜单栏中,点击 "File"(文件) > "Preferences"(首选项) > "Settings…...

2023年拼多多双11百亿补贴新增单件立减玩法介绍
2023年拼多多双11百亿补贴新增单件立减玩法介绍 拼多多启动了11.11大促活动,主题为“天天11.11,天天真低价”。消费者享受多重优惠,包括满减、百亿补贴和单件立减等。百亿补贴新增玩法,有超过20000款品牌商品参与单件立减活动。 …...
面试题 01.06. 字符串压缩
题目来源: leetcode题目,网址:面试题 01.06. 字符串压缩 - 力扣(LeetCode) 解题思路: 计算压缩后的字符串长度,如果该长度小于原字符串长度,返回压缩后的字符串,否则…...

那些你面试必须知道的webpack知识点
目录 1、webpack介绍和简单使用1.1 什么是webpack?1.2 安装webpack1.3 简单使用一下webpack 2、webpack的入口与输出2.1 入口(entry)2.2 输出(output) 3、入口多种配置方法3.1 多文件打包成一个文件3.2 多文件打包成多文件 4、loader的概念5、压缩打包HTML5.1 使用步…...
十四、队列函数
1、概述 (1)使用队列的流程:创建队列、写队列、读队列、删除队列。 2、创建 队列的创建有两种方法:动态分配内存、静态分配内存。 2.1、动态分配内存 (1)函数:xQueueCreate,队列的内存再函数内部动态分配。 (2)函数原型如下&…...
使用高防服务器有什么好处?103.216.155.x
为什么建议租用高防服务器 第一,高防服务器由于业务的特殊性,本身机器的配置要求高,服务器的价格相比普通的贵,而且,机器还有维护费、托管费等,这会让运营的成本上升。 第二,租用高防服务器&a…...

Android笔记(七)Android JetPack Compose组件搭建Scaffold脚手架
在去年2022年曾发布一篇关于脚手架的文章:“Android JetPack Compose组件中Scaffold的应用” 。但是Android的版本从12变更到13及以上版本,导致一些细节的实现存在不同。在本文中,将从头开始介绍整个脚手架的搭建过程。 一、新建项目模块 在…...
Git合并某个分支上的某个提交
1. 首先,确保你当前所在的分支是你要合并分支的父分支。你可以使用以下命令切换到父分支: git checkout <父分支名称> 2. 确保你要合并的分支是可用的。你可以使用以下命令查看所有可用的分支: git branch -a 这将显示所有本地和远程…...

在pytorch中对于张量维度的理解
原文参考链接: https://blog.csdn.net/qq_36930921/article/details/121670945. https://zhuanlan.zhihu.com/p/356951418 张量的计算:https://zhuanlan.zhihu.com/p/140260245 学习过程中对知识的补充学习,谨防原文失效,请大家支…...
JAVA高级教程Java HashMap表达式(7)
目录 7、HashMap的使用students类 7、HashMap的使用 students类 package Map01;import java.util.Objects ;public class Students implements Comparable<Students>{private String name;private int stuNO;public Students() {}public Students(String age, int stuN…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...