python树结构包treelib入门及其计算应用
树是计算机科学中重要的数据结构。例如决策树等机器学习算法设计、文件系统索引等。创建treelib包是为了在Python中提供树数据结构的有效实现。
Treelib的主要特点包括:
- 节点搜索的高效操作。
- 支持常见的树操作,如遍历、插入、删除、节点移动、浅/深复制、子树切割等。
- 支持用户定义的数据负载以加速您的模型构建。
- 漂亮的树显示和文本/json 转储,用于漂亮的显示和离线分析。
- 与 Python 2 和 3 兼容
Snyk.io是一家专注于帮助企业解决开源软件安全问题的公司,给出评价是83分。

1. treelib安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple treelib
github地址:https://github.com/caesar0301/treelib
2. 树结构应用需求
如图所示一个分层次计算因素得分,例如“流动客户”得分是由其子节点因素“货运客户”与“旅游客户”合计得到,计算公式为:货运客户的权重×货运客户的评价值+旅游客户的权重×旅游客户的评价值。

通用计算公式如下:
y = ∑ i = 0 n w i x i y=\sum_{i=0}^{n}{w_i x_i} y=∑i=0nwixi
其中, w i w_i wi为任意因素节点的权重, x i x_i xi为任意因素节点的评价得分值, y y y是这些节点的父节点。
遍历整个树,计算最后的得分,采用递归方案,程序框图如下:

3. 入门使用
3.1. 创建一棵树
treelib 树由Tree和Node两个类完成,其中Node是树中的节点,主要由如下内容:
- identifier:唯一标识
- tag:标签
- data:数据
其他自行看源代码,包括父、子节点关系等内容。
在实际应用中,本文对“data”扩展,使用元组来定义更多的数据(0,1),0是评价得分值,1是权重。
from treelib import Node, Tree
tree = Tree()
tree.create_node("Harry", "harry",data=(None,None)) # root node
tree.create_node("Jane", "jane", parent="harry",data=(None,0.6))
tree.create_node("Bill", "bill", parent="harry",data=(None,0.4))
tree.create_node("Diane", "diane", parent="jane",data=(None,0.3))
tree.create_node("Mary", "mary", parent="jane",data=(None,0.35))
tree.create_node("Mark", "mark", parent="jane",data=(None,0.25))
tree.create_node("Green", "green", parent="bill",data=(None,0.3))
tree.create_node("White", "white", parent="bill",data=(None,0.7))
3.2. 树的简单操作
获取所有的叶子节点。
leaves = tree.leaves()
leaves
[Node(tag=Diane, identifier=diane, data=(None, 0.3)),Node(tag=Mary, identifier=mary, data=(None, 0.35)),Node(tag=Mark, identifier=mark, data=(None, 0.25)),Node(tag=Green, identifier=green, data=(None, 0.3)),Node(tag=White, identifier=white, data=(None, 0.7))]
给叶子节点赋值,易便后续进行计算。
factors_data={'Green':20,'Mark':30,'Mary':100,'Diane':50,'White':40}
for node in leaves:node.data=(factors_data[node.tag],node.data[1])
leaves
[Node(tag=Diane, identifier=diane, data=(50, 0.3)),Node(tag=Mary, identifier=mary, data=(100, 0.35)),Node(tag=Mark, identifier=mark, data=(30, 0.25)),Node(tag=Green, identifier=green, data=(20, 0.3)),Node(tag=White, identifier=white, data=(40, 0.7))]
获取兄弟节点。
# Return the siblings of given @nid. 获取兄弟节点
tree.siblings('diane')
[Node(tag=Mary, identifier=mary, data=(100, 0.35)),Node(tag=Mark, identifier=mark, data=(30, 0.25))]
获取父节点。
#Get parent :class:`Node` object of given id.
tree.parent('diane')
Node(tag=Jane, identifier=jane, data=(None, 0.6))
4. 实际应用
按权重和评价的分值,计算整颗树的各个因素的得分值。
# 计算综合评价
# 输入任意个节点(因素),endnid是约定结束节点
def calscore(tree, firstnode, endnid): nid = firstnode.identifier# 处理根节点 if (tree.parent(nid) == None or firstnode.identifier == endnid ) and firstnode.data[0]!=None:#print('root end')return firstnodeelif tree.parent(nid) ==None:parentnode = firstnodeelse:parentnode = tree.parent(nid)if firstnode.data[0]==None:# 没有计算,直接取子节点childnodes = tree.children(nid)# 计算分值calscore(tree, childnodes[0], endnid)else:# 已经计算,找兄弟节点(必须有兄弟,否则,合并节点)siblings = tree.siblings(nid)for node in siblings: if node.data[0]==None:# 没有计算,直接取子节点childnodes = tree.children(node.identifier)# 计算分值calscore(tree, childnodes[0], endnid)# 兄弟节点都已经计算(有数据的情况),计算父节点得分siblings.append(firstnode)score = 0for node in siblings:score = score + node.data[0]*node.data[1]parentnode.data=(score,parentnode.data[1]) print(parentnode.tag ,parentnode.data)calscore(tree, parentnode, endnid)nid ='white' # 'harry'
#nid = 'jane'firstnode = tree.get_node(nid)calscore(tree, firstnode, 'harry')
# 遍历树
print(','.join([tree[node].tag + str(tree[node].data) for node in tree.expand_tree(mode=Tree.DEPTH)]))
Harry(48.1, None),Bill(34.0, 0.4),Green(20, 0.3),White(40, 0.7),Jane(57.5, 0.6),Diane(50, 0.3),Mark(30, 0.25),Mary(100, 0.35)
5. 锦上添花画棵树
绘图使用graphviz,Graphviz 输入是一个用 dot 语言编写的绘图脚本,通过对输入脚本的解析,分析出其中的点、边及子图,然后根据属性进行绘制。
关于graphviz的使用,参见:Python安装使用graphviz经验,Format: “png“ not recognized。
# Generate DOT code file
tree.to_graphviz("hello.dot")# Can run the following command directly from the terminal as well.
import subprocess
subprocess.call(["dot", "-Tpng", "hello.dot", "-o", "graph1.png"])
关于subprocess:
运行python的时候,我们都是在创建并运行一个进程。像Linux进程那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序。在Python中,我们通过标准库中的subprocess包来fork一个子进程,并运行一个外部的程序。
subprocess包中定义有数个创建子进程的函数,这些函数分别以不同的方式创建子进程,所以我们可以根据需要来从中选取一个使用。另外subprocess还提供了一些管理标准流(standard stream)和管道(pipe)的工具,从而在进程间使用文本通信。

此图dot描述为:
digraph tree {"harry" [label="Harry", shape=circle]"bill" [label="Bill", shape=circle]"jane" [label="Jane", shape=circle]"green" [label="Green", shape=circle]"white" [label="White", shape=circle]"diane" [label="Diane", shape=circle]"mark" [label="Mark", shape=circle]"mary" [label="Mary", shape=circle]"harry" -> "jane""harry" -> "bill""bill" -> "green""bill" -> "white""jane" -> "diane""jane" -> "mary""jane" -> "mark"
}
6. 其他树解决方案参考
使用内置的defaultdict 我们可以很容易的定义一个树形数据结构。例如参考博文【一行python实现树形结构的方法】。
def tree(): return defaultdict(tree)users = tree()
users['harold']['username'] = 'bell'
users['handler']['username'] = 'master'
我们可以使用print(json.dumps(users))以json的形式输出,于是我们看到:
{'harold': {'username': 'bell'}, 'handler': {'username': 'master'}}
参考:
https://treelib.readthedocs.io/en/latest/
XerCis. Python树结构库treelib. CSDN博客. 2022.04
mowangdk. 一行python实现树形结构的方法 . 脚本之家. 2019.08
肖永威. Python安装使用graphviz经验,Format: “png“ not recognized. CSDN博客. 2023.10
相关文章:
python树结构包treelib入门及其计算应用
树是计算机科学中重要的数据结构。例如决策树等机器学习算法设计、文件系统索引等。创建treelib包是为了在Python中提供树数据结构的有效实现。 Treelib的主要特点包括: 节点搜索的高效操作。支持常见的树操作,如遍历、插入、删除、节点移动、浅/深复制…...
Rust之自动化测试(三): 测试组合
开发环境 Windows 10Rust 1.73.0 VS Code 1.83.1 项目工程 这里继续沿用上次工程rust-demo 测试组合 正如本章开始时提到的,测试是一个复杂的学科,不同的人使用不同的术语和组织。Rust社区根据两个主要类别来考虑测试:单元测试和集成测试。单元测试很…...
专业管理菜单的增删改、查重
1,点击专业管理菜单------查询所有专业信息列表 ①点击菜单,切换专业组件 ②切换到列表组件后,向后端发送请求到Servlet ③调用DAO层,查询数据库(sql),封装查询到的内容 ④从后端向前端做出…...
vue3插件开发,上传npm
创建插件 在vue3工程下,创建组件vue页: toolset.vue。并设置组件名称。注册全局组件。新建index.js文件。内容如下,可在main.js中引入index.js,注册该组件进行测试。API服务是LLM(大语言模型)开放接口平台:持续接入各种主流的大模型接口,并提供简单、易用、统一的API交互…...
【python】屈小原现在要为学校写校庆贺文(CTGU百年校庆)
题目: """ 题目描述: 屈小原需要为学校的校庆写一篇贺文,共需写下n个字,但他目前只完成了1个字。屈小原可以进行两种操作: 在文档的末尾添加一个字,这样字数就会变为x1。 写下与当前字数相同…...
探索未来的视觉革命:卷积神经网络的崭新时代(二)
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...
博客后台模块续更(三)
四、后台模块-动态路由 实现了这个动态路由功能之后,就能在浏览器web页面登录进博客管理后台了 1. 接口分析 后台系统需要能实现不同的用户权限可以看到不同的功能,即左侧的导航栏 请求方式 请求地址 请求头 GET /getRouters 需要token请求头 …...
第十二届蓝桥杯模拟赛第三期
A填空题 问题描述 请问在 1 到 2020 中,有多少个数与 2020 互质,即有多少个数与 2020 的最大公约数为 1。 参考答案 800 public class Main {public static void main(String[] args) {int ans0;for(int i1;i<2020;i) {if(gcd(2020,i)1) {ans;}}…...
2023年浙大MEM考前80天上岸经验分享
时间过得真快,转眼间已经是十月份了。回想起去年这个时候,我还在为考研而感到焦虑不安。然而,如今我已经在浙大MEM项目学习了一个多月的时间了。在这一个月的学习过程中,我不仅学到了许多专业知识,还结识了很多志同道合…...
增加并行度后,发现Flink窗口不会计算的问题。
文章目录 前言一、现象二、结论三、解决 前言 窗口没有关闭计算的问题,一直困扰了很久,经过多次验证,确定了问题的根源。 一、现象 Flink使用了window,同时使用了watermark ,并且还设置了较高的并行度。生产是设置了…...
使用 JMeter 和 Docker 进行服务存根
用于性能测试的服务存根:简介 随着测试项目的复杂性不断增加,越来越多的被测系统的测试流程受到依赖系统的影响。当我说“依赖系统”时,我指的是: 不受当前开发影响的遗留系统 属于另一个组织的第三方服务 您的组织开发的系统&am…...
《王道计算机考研——操作系统》学习笔记总目录+思维导图
本篇文章是对《王道计算机考研——操作系统》所有知识点的笔记总结归档和计算机网络的思维导图 学习视频:王道计算机考研 操作系统 408四件套【计网、计组、操作系统、数据结构】完整课堂PPT 思维导图 (求Star~):【王道考研】计…...
多模态及图像安全的探索与思考
前言 第六届中国模式识别与计算机视觉大会(The 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023)已于近期在厦门成功举办。通过参加本次会议,使我有机会接触到许多来自国内外的模式识别和计算机视觉领域的研究…...
基础算法相关笔记
排序 最好情况下: 冒泡排序 最坏时间复杂度 O ( n 2 ) O(n^2) O(n2)。 插入排序 最坏时间复杂度为 O ( n 2 ) O(n^2) O(n2),最优时间复杂度为 O ( n ) O(n) O(n)。 平均情况下: 快速排序 最坏时间复杂度为 O ( n 2 ) O(n^2) O(n2)&…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
