模拟退火算法改进
import numpy as np
import matplotlib.pyplot as plt
import math
import random
from scipy.stats import norm
from mpl_toolkits.mplot3d import Axes3D
# 目标函数
def Function(x, y):
return -20 * np.exp(-0.2*np.sqrt(0.5*(x*x+y*y)))\
-np.exp(0.5*(np.cos(2*np.pi*x)+np.cos(2*np.pi*y)))+20+np.e
# 初始化状态
def initN(low, high):
'''
随机生成一组状态取能量最低的状态
:param low:
:param high:
:return:
'''
x = random.uniform(low, high)
y = random.uniform(low, high)
z = Function(x, y)
for i in range(20):
x1 = random.uniform(low, high)
y1 = random.uniform(low, high)
z1 = Function(x1, y1)
if z1 < z:
x = x1
y = y1
z = z1
return x, y
# 绘制目标函数
def figureFuc(low, high):
X = np.linspace(low, high, 500)
Y = np.linspace(low, high, 500)
XX, YY = np.meshgrid(X, Y)
Z = -20 * np.exp(-0.2*np.sqrt(0.5*(XX*XX+YY*YY)))\
-np.exp(0.5*(np.cos(2*np.pi*XX)+np.cos(2*np.pi*YY)))+20+np.e
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(XX, YY, Z, cmap=plt.get_cmap('rainbow'))
plt.show()
# Metropolis准则接受新解
def Metropolis(detaF, T): # detaF为f(n+1) - f(x)
if detaF < 0:
return 1
else:
pTk = math.exp(-detaF/T)
if pTk > random.random():
return 1
else:
return 0
# 利用正态分布产生新解
def get_normal_random_number(x,y,scale): # 正态分布
'''
:param x: 均值
:param y: 均值
:param scale: 方差
:return:
'''
fx = np.random.normal(x, scale)
x = norm.ppf(fx)
fy = np.random.normal(y, scale)
y = norm.ppf(fy)
return x, y
# 利用均匀分布产生新解
def get_uniform_random_number(low, high):
'''
:param low:
:param high:
:return:
'''
x = np.random.uniform(low, high)
y = np.random.uniform(low, high)
return x, y
# 冷却函数
def descT(T, k):
# return T/np.log(1 + k)
return 0.9*T
# 主函数
def startMain():
# 初始化
low = -5
high = 5
T = 10000
Tmin = 10
k = 1
# figureFuc(low, high) # 画图
#x = random.uniform(low, high)
#y = random.uniform(low, high)
x, y = initN(low, high)
z = Function(x, y)
min_value = z
record_value = [] # 用数组记录被接受的新解并绘图,方便分析
while(T > Tmin and k <= 1000):
x1, y1 = get_normal_random_number(x, y, 2) # 利用正态分布产生新解
# x1, y1 = get_uniform_random_number(low, high) # 利用随机分布产生新解
if x1 < low or x1 > high or y1 < low or y1 > high: # 新解不在定义域内时跳出本次循环
break
z1 = Function(x1, y1) # 计算新解的目标函数值
deltaE = z1 - z
min_value = min(min_value, z1)
if Metropolis(deltaE, T) == 1: # 接受按照Metropolis准则接受新解
x = x1
y = y1
z = z1
record_value.append(z)
if deltaE > 0:
T = descT(T, k)
else:
k += 1
print('迭代到组后的解:', z)
print('记录下的最优解:', min_value)
# 打印解的变化曲线
x=[i+1 for i in range(len(record_value))]
plt.plot(x, record_value)
plt.show()
if __name__ == "__main__":
startMain()
相关文章:
模拟退火算法改进
import numpy as np import matplotlib.pyplot as plt import math import random from scipy.stats import norm from mpl_toolkits.mplot3d import Axes3D # 目标函数 def Function(x, y): return -20 * np.exp(-0.2*np.sqrt(0.5*(x*xy*y)))\ -np.exp(0.5*(n…...

SpringBoot+HttpClient+JsonPath提取A接口返回值作为参数调用B接口
前言 在做java接口自动化中,我们常常需要依赖多个接口,A接口依赖B,C,D接口的响应作为请求参数;或者URL中的参数是从其他接口中提取返回值作获取参数这是必不可少的。那么怎么实现呢?下面就来介绍多业务依赖…...
JUC 之 CompletableFuture
——CompletableFuture Future Future 接口(FutureTask 实现类) 定义了操作异步任务执行的一些方法,如获取异步的执行结果、取消任务的执行、判断任务是否被取消、判断任务执行是否完毕例如: 主线程让一个子线程去执行任务&…...

7-vue-1
谈谈你对MVVM的理解 为什么要有这些模式,目的:职责划分、分层(将Model层、View层进行分类)借鉴后端思想,对于前端而已,就是如何将数据同步到页面上 MVC模式 代表:Backbone underscore jquer…...

OpenAPI SDK组件介绍
背景 公司成立以来,积累了数以万计的可复用接口。上层的SaaS业务,原则上要复用这些接口开发自己的业务,为了屏蔽调用接口的复杂性,基础服务开发了apisdk组件,定义了一套声明OpenAPI的注解、注解解析器,实例…...

【Java】Synchronized锁原理和优化
一、synchronized介绍 synchronized中文意思是同步,也称之为”同步锁“。 synchronized的作用是保证在同一时刻, 被修饰的代码块或方法只会有一个线程执行,以达到保证并发安全的效果。 synchronized是Java中解决并发问题的一种最常用的方法…...

西北工业大学2020-2021学年大物(I)下期末试题选填解析
2 位移电流。磁效应服从安培环路,热效应不服从焦耳-楞次定律。注意,它是变化的电场而非磁场产生。3 又考恒定磁场中安培环路定理。4感生电场5 麦克斯韦速率分布函数。6 相同的高温热源和低温热源之间的一切可逆热机的工作效率相等,无论工质如…...

PHP - ChatGpt API 接入 ,代码,亲测!(最简单!)
由于最近ChatGpt 大火,但是门槛来说是对于大家最头疼的环节, 我自己也先开发了一个个人小程序!大家可以访问使用下, 由此ChatGpt 有一个API 可以仅供大伙对接 让我来说下资质: 1:首先要搞得到一个 ChatGp…...

物联网MQTT协议简单介绍
物联网曾被认为是继计算机、互联网之后,信息技术行业的第三次浪潮。随着基础通讯设施的不断完善,尤其是 5G 的出现,进一步降低了万物互联的门槛和成本。物联网本身也是 AI 和区块链应用很好的落地场景之一,各大云服务商也在纷纷上…...

Dubbo 源码解读:负载均衡策略
概览 org.apache.dubbo包下META-INF/dubbo/internal/org.apache.dubbo.rpc.cluster.LoadBalance中内部spi实现类有以下几种: randomorg.apache.dubbo.rpc.cluster.loadbalance.RandomLoadBalance roundrobinorg.apache.dubbo.rpc.cluster.loadbalance.RoundRobinL…...

吃瓜教程笔记—Task04
神经网络 知识点 M-P神经元 模型如图所示: 神经元的工作机理:神经元接收来到n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过…...

进程地址空间(虚拟地址空间)
目录 引入问题 测试代码 引入地址空间 故事1: 故事二: 解决问题 为什么有虚拟地址空间 扩展 扩展1(没有地址空间,OS如何工作) 扩展2 (代码只读深入了解) 扩展3(malloc本质…...

【项目精选】基于Vue + ECharts的数据可视化系统的设计与实现(论文+源码+视频)
今天给小伙伴们推荐一款超优秀的全新Vue3.0大数据系统Vue3-bigData。 点击下载源码 vue3-bigdata 基于vue3.0echarts构建的可视化大屏图表展示系统。包括各种可视化图表及Vue3新API使用。 功能 柱状图、饼图、词云图、漏斗图 水球图、折线图 仪表盘、雷达图 矩形树图、关系…...

JavaScript Window Screen
文章目录JavaScript Window ScreenWindow ScreenWindow Screen 可用宽度Window Screen 可用高度JavaScript Window Screen window.screen 对象包含有关用户屏幕的信息。 Window Screen window.screen对象在编写时可以不使用 window 这个前缀。 一些属性: screen…...

【双重注意机制:肺癌:超分】
Dual attention mechanism network for lung cancer images super-resolution (肺癌图像超分辨率的双重注意机制网络) 目前,肺癌的发病率和死亡率均居世界恶性肿瘤之首。提高肺部薄层CT的分辨率对于肺癌筛查的早期诊断尤为重要。针对超分辨…...
各种中间件的使用
init background 这一部分我们学习一些常用的, 但是不需要深入理解的中间件 , 例如kafka ,分布式文件系统。 summary Content what is kafka? What time to used it ? 其实消息队列就是解决系统之间复杂交互例如聊天系统和交易系统, …...

Systemverilog覆盖率的合并和计算方式
在systemverilog中,对于一个covergroup来说,可能会有多个instance,我们可能需要对这些instance覆盖率进行操作。 只保存covergroup type的覆盖率,不需要保存instance-specified的覆盖率coverage type和instance-specified的覆盖率…...

(周末公众号解读系列)2000字-视觉SLAM综述
参考链接:https://mp.weixin.qq.com/s?__bizMzg2NzUxNTU1OA&mid2247528395&idx1&sn6c9290dd7fd926f11cbaca312fbe99a2&chksmceb84202f9cfcb1410353c805b122e8df2e2b79bd4031ddc5d8678f8b11c356a25f55f488907&scene126&sessionid1677323905…...
力扣29-两数相除
29. 两数相除 给你两个整数,被除数 dividend 和除数 divisor。将两数相除,要求 不使用 乘法、除法和取余运算。 整数除法应该向零截断,也就是截去(truncate)其小数部分。例如,8.345 将被截断为 8 &#x…...

【MindSpore】安装和使用MindSpore 2.0.0版本简单实现数据变换Transforms功能
本篇文章主要是讲讲MindSpore的安装以及根据官方提供的例子实现数据变换功能。 昇思MindSpore是一款开源的AI框架,旨在实现易开发、高效执行、全场景覆盖三大目标。 目录1、加入MindSpore社区2、安装前准备2.1、获取安装命令2.2、安装pip2.3、确认系统环境3、安装Mi…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...