【MindSpore】安装和使用MindSpore 2.0.0版本简单实现数据变换Transforms功能
本篇文章主要是讲讲MindSpore的安装以及根据官方提供的例子实现数据变换功能。
昇思MindSpore是一款开源的AI框架,旨在实现易开发、高效执行、全场景覆盖三大目标。
目录
- 1、加入MindSpore社区
- 2、安装前准备
- 2.1、获取安装命令
- 2.2、安装pip
- 2.3、确认系统环境
- 3、安装MindSpore
- 3.1、完整性校验
- 3.2、命令安装
- 3.3、验证安装
- 3.4、升级版本
- 4、数据准备
- 4.1、背景
- 4.2、安装download模块
- 4.3、下载数据
- 5、数据变换 Transforms
- 5.1、Common Transforms
- 5.1.1、Compose
- 5.2、Vision Transforms
- 5.2.1、Rescale
- 5.2.2、Normalize
- 5.2.3、HWC2CWH
- 5.3、Text Transforms
- 5.3.1、BasicTokenizer
- 5.3.2、Lookup
- 5.4、Lambda Transforms
1、加入MindSpore社区

2、安装前准备
2.1、获取安装命令
官方提供版本和环境配置信息,非常的方便,直接根据自己环境选择即可

pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
# 注意参考下方安装指南,添加运行所需的环境变量配置
2.2、安装pip
确保自己环境已经安装pip,若还没有安装,推荐如下两种方式安装
1)官方推荐
pip方式安装MindSpore CPU版本-Windows
2)博客文章
可参考下面我这篇文章写的【小5聊】Python基础学习之python版本对应pip版本查看
2.3、确认系统环境
1)操作系统
确认安装Windows 10是x86架构64位操作系统。

2)Python版本
确认安装Python(>=3.7.5)。可以从Python官网或者华为云选择合适的版本进行安装

3、安装MindSpore
3.1、完整性校验
set MS_VERSION=2.0.0a0

3.2、命令安装
复制自己选择的安装命令
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
以下为安装过程


3.3、验证安装
python -c "import mindspore;mindspore.run_check()"
3.4、升级版本
当需要升级版本时,可执行如下命令
pip install --upgrade mindspore=={version}
温馨提示:升级到rc版本时,需要手动指定{version}为rc版本号,例如1.5.0rc1;如果升级到正式版本,=={version}字段可以缺省。
4、数据准备
mindspore.dataset提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。
4.1、背景
通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。
4.2、安装download模块
pip install download

4.3、下载数据
根据官方提供的例子代码,会将数据下载到根目录

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset# Download data from open datasetsurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)train_dataset = MnistDataset('MNIST_Data/train')

5、数据变换 Transforms
5.1、Common Transforms
mindspore.dataset.transforms模块支持一系列通用Transforms
5.1.1、Compose
Compose接收一个数据增强操作序列,然后将其组合成单个数据增强操作。我们仍基于Mnist数据集呈现Transforms的应用效果。
1)根据上一步下载好的数据,可加载并输出,如下
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDatasettrain_dataset = MnistDataset('MNIST_Data/train')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

2)数据变换
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset# 先加载到数据
train_dataset = MnistDataset('MNIST_Data/train')# 设置数据变换参数
composed = transforms.Compose([vision.Rescale(1.0 / 255.0, 0),vision.Normalize(mean=(0.1307,), std=(0.3081,)),vision.HWC2CHW()]
)# 输出数据变换后的内容
train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

5.2、Vision Transforms
mindspore.dataset.vision模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了Rescale、Normalize和HWC2CHW变换。
5.2.1、Rescale
Rescale变换用于调整图像像素值的大小,包括两个参数:
rescale:缩放因子。
shift:平移因子。
1)像素值进行缩放
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDatasetrandom_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)
print(random_np)

2)数据处理
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDatasetrandom_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)
print(rescaled_image)

5.2.2、Normalize
Normalize变换用于对输入图像的归一化
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDatasetrandom_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)
print(normalized_image)

5.2.3、HWC2CWH
HWC2CWH变换用于转换图像格式。
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDatasetrandom_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)hwc_image = np.expand_dims(normalized_image, -1)
hwc2cwh = vision.HWC2CHW()
chw_image = hwc2cwh(hwc_image)
print(hwc_image.shape, chw_image.shape)

5.3、Text Transforms
mindspore.dataset.text模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法。
首先我们定义三段文本,作为待处理的数据,并使用GeneratorDataset进行加载。
5.3.1、BasicTokenizer
分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的BasicTokenizer举例。配合map,将三段文本进行分词,可以看到处理后的数据成功分词。
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDatasettexts = ['Welcome to Beijing','北京欢迎您!','我喜欢China!',
]test_dataset = GeneratorDataset(texts, 'text')
fdfds=text.BasicTokenizer()
test_dataset = test_dataset.map(text.BasicTokenizer())
报错原因:BasicTokenizer接口不支持windows平台

5.3.2、Lookup
Lookup为词表映射变换,用来将Token转换为Index。在使用Lookup前,需要构造词表,一般可以加载已有的词表,或使用Vocab生成词表。这里我们选择使用Vocab.from_dataset方法从数据集中生成词表。
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDatasettexts = ['Welcome to Beijing','北京欢迎您!','我喜欢China!',
]test_dataset = GeneratorDataset(texts, 'text')
vocab = text.Vocab.from_dataset(test_dataset)
print(vocab.vocab())

5.4、Lambda Transforms
Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# 2023-02-25import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDatasettest_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))

总结:第一次体验MindSpore的AI框架,我感觉视野一下子就被打开了,体验非常的棒,给MindSpore点赞,官方提供的例子也非常清晰明了!感兴趣的小伙伴也可以体验一下!
相关文章:
【MindSpore】安装和使用MindSpore 2.0.0版本简单实现数据变换Transforms功能
本篇文章主要是讲讲MindSpore的安装以及根据官方提供的例子实现数据变换功能。 昇思MindSpore是一款开源的AI框架,旨在实现易开发、高效执行、全场景覆盖三大目标。 目录1、加入MindSpore社区2、安装前准备2.1、获取安装命令2.2、安装pip2.3、确认系统环境3、安装Mi…...
PRML笔记4-绪论中推断和决策小结
在推断阶段使用训练数据学习后验概率p(Ck∣x)p(\mathcal{C_k}|\boldsymbol{x})p(Ck∣x)的模型;在决策阶段使用后验概率进行最优的分类;亦或是同时解决推断和决策问题,简单的学习一个函数f(x)f(\boldsymbol{x})f(x),将输入x\bold…...
DSPE-PEG-Streptavidin;Streptavidin-PEG-DSPE;磷脂聚乙二醇链霉亲和素,科研用试剂
DSPE-PEG-Streptavidin 中文名称:二硬脂酰基磷脂酰乙醇胺-聚乙二醇-链霉亲和素 中文别名:磷脂-聚乙二醇-链霉亲和素;链霉亲和素PEG磷脂 英文常用名:DSPE-PEG-Streptavidin;Streptavidin-PEG-DSPE 外观:粉…...
Java中的Stream
Stream流的特点 中间操作返回的是Stream类型,终结操作返回的是void 中间操作的这个Lazy指的是增加待处理操作,而不会真的处理(放队列里),集合中的数据并未实际改变,到终结操作的时候才会把这些放队列里的操…...
【数据库】关系数据理论
第六章关系数据理论 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-r9ETJ75y-1677334548439)(imgs/image-20220508202554924.png)] 数据依赖 是一个关系内部属性与属性之间的一种约束关系 函数依赖多值依赖 函数依赖 [外链图片转存失败,源站可…...
初阶C语言——结构体【详解】
文章目录1. 结构体的声明1.1 结构的基础知识1.2 结构的声明1.3 结构成员的类型1.4 结构体变量的定义和初始化2. 结构体成员的访问3. 结构体传参1. 结构体的声明 1.1 结构的基础知识 结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。 …...
盘点:9款身份和访问管理工具
身份和访问管理(IAM)长期以来一直是安全领导者职业生涯的关键“试炼场”,许多人在身份技术部署方面做出了事关成败的决定。 确保安全访问和身份管理是网络安全态势的两大基础 。同时,人员、应用程序和系统登录的方式以及它们彼此集…...
Linux下的进程地址空间
Linux下的进程地址空间程序地址空间回顾从代码结果推结论引入进程地址空间页表为什么要有进程地址空间重新理解进程地址空间程序地址空间回顾 我们在初学C/C的时候,我们会经常看见老师们画这样的内存布局图: 可是这真的是内存吗? 如果不是它…...
Web Spider Ast-Hook 浏览器内存漫游 - 数据检索
文章目录一、资源下载二、通过npm安装anyproxy模块三、anyproxy的介绍以及基本使用1. anyproxy的功能介绍2. anyproxy的基本使用四、给浏览器挂代理五、实操极验demo案例总结提示:以下是本篇文章正文内容,下面案例可供参考 一、资源下载 Github&#x…...
开源启智,筑梦未来!第四届OpenI/O启智开发者大会开幕
2023年2月24日,第四届OpenI/O启智开发者大会在深圳顺利开幕。本次活动由鹏城实验室、新一代人工智能产业技术创新战略联盟(AITISA)主办,OpenI启智社区、中关村视听产业技术创新联盟(AVSA)承办,华…...
CS144-Lab6
概述 在本周的实验中,你将在现有的NetworkInterface基础上实现一个IP路由器,从而结束本课程。路由器有几个网络接口,可以在其中任何一个接口上接收互联网数据报。路由器的工作是根据路由表转发它得到的数据报:一个规则列表&#…...
最好的个人品牌策略是什么样的
在这个自我营销的时代,个人品牌越来越受到人们的重视。您的个人品牌的成功与否取决于您在专业领域拥有的知识,以及拥有将这些知识传达给其他用户的能力。如果人们认为您没有能力并且无法有效地分享有用的知识,那么您就很难获得关注并实现长远…...
第四届国际步态识别竞赛HID2023已经启动,欢迎报名
欢迎参加第四届HID 2023竞赛,证明您的实力,推动步态识别研究发展!本次竞赛的亮点:总额人民币19,000元奖金;最新的SUSTech-Competition步态数据集;比上一届更充裕的准备时间;OpenGait开源程序帮您…...
「2」指针进阶——详解
🚀🚀🚀大家觉不错的话,就恳求大家点点关注,点点小爱心,指点指点🚀🚀🚀 目录 🐰指向函数指针数组的指针(很少用,了解) 🐰回调函数&…...
计网笔记 网络层(端到端的服务)
第三章 网络层(端到端的服务) **TCP/IP体系中网络层向上只提供简单灵活的、无连接的、尽最大努力交付的数据报服务。**网路层不提供服务质量的承诺,不保证分组交付的时限,所传送的分组可能出错、丢失、重复和失序。进程之间通信的…...
[蓝桥杯 2018 省 B] 日志统计——双指针算法
题目描述小明维护着一个程序员论坛。现在他收集了一份“点赞”日志,日志共有 N 行。其中每一行的格式是 ts id,表示在 ts 时刻编号 id 的帖子收到一个“赞”。现在小明想统计有哪些帖子曾经是“热帖”。如果一个帖子曾在任意一个长度为 DD 的时间段内收到…...
SpringMVC请求转发和重定向
请求转发:forward:重定向:redirect转发:由服务器的页面进行跳转,不需要客户端重新发送请求:特点如下:1、地址栏的请求不会发生变化,显示的还是第一次请求的地址2、请求的次数,有且仅…...
如何建立项目标准化评价体系?【锦狸】
PMO团队面临着管理多个项目,甚至是多个项目集,多个产品集的问题,那么如何对项目们进行标准化评价体系的建设,就是PMO需要首先思考的问题。 首先我们要关注项目的背景,了解了项目背景之后,我们才可以明确项…...
Vue基础入门讲义(二)-语法基础
文章目录1.vue入门案例1.1.HTML模板1.2.vue渲染1.3.双向绑定1.4.事件处理2.Vue实例2.1.创建Vue实例2.2.模板或元素2.3.数据2.4.方法3.生命周期钩子3.1.生命周期3.2.钩子函数3.3.this1.vue入门案例 1.1.HTML模板 在项目目录新建一个HTML文件 01-demo.html 1.2.vue渲染 01-d…...
应广单片机用8位乘法器实现16位乘法运算
应广单片机例如pms150,pms152这种是没有带乘法器的,如果需要进行乘法运算,可以用ide里面“程序产生器”菜单里面 产生乘法函数,把数据填入对应的参数,然后调用函数就可以实现乘法运算了。除此之外,应广还有…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
