OpenCV实现物体尺寸的测量
一 ,项目分析
物体尺寸测量的思路是找一个确定尺寸的物体作为参照物,根据已知的计算未知物体尺寸。
如下图所示,绿色的板子尺寸为220*300(单位:毫米),通过程序计算白色纸片的长度。

主要是通过图像处理技术,实现对一张图片中物体的尺寸测量,具体需求如下:
-
读入一张图片,该图片中包含需要进行测量的物体
-
对图片进行边缘检测,找到所有的轮廓
-
在所有的轮廓中选取面积最大的轮廓,即为所要测量的物体
-
对该物体进行透视变换,将其变成一个矩形
-
在矩形中,通过线段交叉点的方式,确定出物体的高度和宽度
-
将高度和宽度转换成实际尺寸,并在图片上标注出来
-
将结果显示在屏幕上。
二,实现流程
- 导入必要的库:cv2和numpy。
import cv2
import numpy as np
2.定义了一些参数:缩放比例、输出图片的宽度和高度。
scale = 2
wP = 220 * scale
hP = 300 * scale
3.定义了一个函数getContours,用于获取图像中的轮廓。该函数首先将图像转换为灰度图,然后进行高斯模糊,再进行Canny边缘检测,接着进行膨胀和腐蚀操作,最后使用findContours函数找到所有的外轮廓。根据面积和拐点个数的条件进行轮廓过滤,返回过滤后的轮廓列表。
def getContours(img, cThr=[100, 100], showCanny=False, minArea=1000, filter=0, draw=False):imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1)imgCanny = cv2.Canny(imgBlur, cThr[0], cThr[1])kernel = np.ones((5, 5))imgDial = cv2.dilate(imgCanny, kernel, iterations=3)imgThre = cv2.erode(imgDial, kernel, iterations=2)if showCanny: cv2.imshow('Canny', imgThre)# 寻找所有的外轮廓_, contours, _ = cv2.findContours(imgThre, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)finalCountours = []# 遍历找到的轮廓for i in contours:area = cv2.contourArea(i) # 轮廓的面积if area > minArea: # 如果大于设置的最小轮廓值,就往下走peri = cv2.arcLength(i, True) # 封闭的轮廓的长度approx = cv2.approxPolyDP(i, 0.02 * peri, True) # 封闭轮廓的拐点bbox = cv2.boundingRect(approx) # 找到边界框if filter > 0: # 需不需要根据拐点个数进行过滤轮廓if len(approx) == filter: # 拐点个数,面积,拐点位置,边界框,轮廓finalCountours.append([len(approx), area, approx, bbox, i])else:finalCountours.append([len(approx), area, approx, bbox, i])finalCountours = sorted(finalCountours, key=lambda x: x[1], reverse=True) # 根据轮廓大小进行从大到小的排序if draw: # 是否要画出来轮廓for con in finalCountours:cv2.drawContours(img, con[4], -1, (0, 0, 255), 3)return img, finalCountours
4. 定义了一个函数reorder,用于重新排序四个点的顺序。根据四个点的和、差值的最大值和最小值进行排序,返回重新排序后的点。
def reorder(myPoints):myPointsNew = np.zeros_like(myPoints)myPoints = myPoints.reshape((4, 2))add = myPoints.sum(1)myPointsNew[0] = myPoints[np.argmin(add)]myPointsNew[3] = myPoints[np.argmax(add)]diff = np.diff(myPoints, axis=1)myPointsNew[1] = myPoints[np.argmin(diff)]myPointsNew[2] = myPoints[np.argmax(diff)]return myPointsNew
5. 定义了一个函数warpImg,用于对图像进行透视变换。根据输入的四个点和输出图像的宽度和高度,使用getPerspectiveTransform函数计算透视变换矩阵,然后使用warpPerspective函数进行透视变换,并对变换后的图像进行裁剪。
def warpImg(img, points, w, h, pad=20):# print(points)points = reorder(points)pts1 = np.float32(points)pts2 = np.float32([[0, 0], [w, 0], [0, h], [w, h]])matrix = cv2.getPerspectiveTransform(pts1, pts2)imgWrap = cv2.warpPerspective(img, matrix, (w, h))imgWrap = imgWrap[pad:imgWrap.shape[0] - pad, pad:imgWrap.shape[1] - pad]return imgWrap
6. 定义了一个函数findDis,用于计算两个点之间的距离。
def findDis(pts1, pts2):return ((pts2[0] - pts1[0]) ** 2 + (pts2[1] - pts1[1]) ** 2) ** 0.5
7. 读取输入的图像,并将其缩放到指定的尺寸。
path = 'E:\All_in\opencv\chicun.png'
img = cv2.imread(path)
img = cv2.resize(img, (0, 0), None, 0.18, 0.18)
8. 使用getContours函数获取图像中的轮廓,设定最小轮廓面积为8000,拐点个数为4,返回过滤后的轮廓列表。
img, conts = getContours(img, minArea=8000, filter=4)
9. 判断是否存在轮廓,若存在,则找到最大轮廓的拐点位置,使用warpImg函数对图像进行透视变换,并返回变换后的图像。
if len(conts) != 0:biggest = conts[0][2] # 最大轮廓的拐点位置# print(biggest)imgWrap = warpImg(img, biggest, wP, hP)
10. 对变换后的图像再次使用getContours函数获取轮廓,设定最小轮廓面积为2000,拐点个数为4,返回过滤后的轮廓列表。
imgContours2, conts2 = getContours(imgWrap, minArea=2000, filter=4, cThr=[50, 50])
11. 遍历过滤后的轮廓列表,对每个轮廓绘制多边形和箭头,并计算出两个方向的长度,然后在图像上标注长度信息。
if len(conts) != 0:for obj in conts2:cv2.polylines(imgContours2, [obj[2]], True, (0, 255, 0), 2)nPoints = reorder(obj[2])nW = round((findDis(nPoints[0][0] // scale, nPoints[1][0] // scale) / 10), 1)nH = round((findDis(nPoints[0][0] // scale, nPoints[2][0] // scale) / 10), 1)# 创建箭头cv2.arrowedLine(imgContours2, (nPoints[0][0][0], nPoints[0][0][1]), (nPoints[1][0][0], nPoints[1][0][1]),(255, 0, 255), 3, 8, 0, 0.05)cv2.arrowedLine(imgContours2, (nPoints[0][0][0], nPoints[0][0][1]), (nPoints[2][0][0], nPoints[2][0][1]),(255, 0, 255), 3, 8, 0, 0.05)x, y, w, h = obj[3]cv2.putText(imgContours2, '{}cm'.format(nW), (x + 30, y - 10), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1,(255, 0, 255), 2)cv2.putText(imgContours2, '{}cm'.format(nH), (x - 70, y + h // 2), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1,(255, 0, 255), 2)
12 . 显示结果图像和原始图像,并等待按下任意键关闭窗口。
cv2.imshow('background', imgContours2)cv2.imshow('Original', img)
cv2.waitKey(0)
三 ,结果展示

四 ,应用前景
-
工业测量:在工业领域中,Opencv测尺寸可以用于检测零件尺寸是否符合规格要求。比如,在生产线上,可以通过拍摄零件图片,利用Opencv测量零件的长度、宽度、直径等参数,以确保产品质量。
-
医学影像:Opencv测尺寸可以应用于医学影像领域中,例如在CT、MRI等医学影像中,测量肿瘤大小、血管直径等。这对于医生来说是非常重要的,可以帮助他们做出准确的诊断和治疗方案。
-
建筑测量:在建筑和房地产领域中,Opencv测尺寸可以用于测量建筑物的尺寸、房间面积等。通过拍摄建筑物的照片,利用Opencv进行测量,可以帮助建筑师、设计师和房地产开发商进行规划和设计。
-
车辆测量:Opencv测尺寸可以应用于交通领域,例如测量车辆的长度、宽度、高度等。这对于道路设计、桥梁设计、停车场规划等方面是非常重要的。
-
教育培训:Opencv测尺寸可以用于教育培训领域中,例如在物理实验中测量物体的大小、重量等。通过利用Opencv进行测量,可以帮助学生更直观地理解和掌握物理概念。
相关文章:
OpenCV实现物体尺寸的测量
一 ,项目分析 物体尺寸测量的思路是找一个确定尺寸的物体作为参照物,根据已知的计算未知物体尺寸。 如下图所示,绿色的板子尺寸为220*300(单位:毫米),通过程序计算白色纸片的长度。 主要是通过…...
投资研报的优质网站
投资研报:https://www.zhihu.com/question/357713923/answer/2304672553...
每日刷题|贪心算法初识
食用指南:本文为作者刷题中认为有必要记录的题目 推荐专栏:每日刷题 ♈️今日夜电波:悬溺—葛东琪 0:34 ━━━━━━️💟──────── 3:17 …...
[python]如何操作Outlook实现邮件自动化
【背景】 邮件自动化存在很多需求场景,有的场景希望会出现Outlook窗口在发送前进行一下人工检查等等的人为干预,有的则希望定时直接发送,有的需要加附件等等。本篇讨论用Python覆盖这些Outlook邮件自动化场景的方法。 【解决方法】 首先Outlook和SMTP的邮件自动化方法所使…...
2008-2021年上市公司实体企业金融化程度测算数据(原始数据+stata代码)
2008-2021年上市公司实体企业金融化程度测算(原始数据stata代码) 1、时间:2008-2021年 2、指标:股票代码、年份、交易性金融资产、衍生金融资产、发放贷款及垫款净额、可供出售金融资产净额、持有至到期投资净额、长期债权投资净…...
day02_numpy_demo
Numpy Numpy的优势ndarray属性基本操作 ndarray.func() numpy.func()ndarray的运算:逻辑运算、统计运算、数组间运算合并、分割、IO操作、数据处理,不过这个一般使用的是pandas Numpy的优势 Numpy numerical数值化 python 数值计算的python库,用于快…...
LeetCode 414. Third Maximum Number【数组】简单
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...
FPGA时序分析与约束(6)——综合的基础知识
在使用时序约束的设计过程中,综合(synthesis)是第一步。 一、综合的解释 在电子设计中,综合是指完成特定功能的门级网表的实现。除了特定功能,综合的过程可能还要满足某种其他要求,如功率、操作频率等。 有…...
Python实现一个简单的http服务,Url传参输出html页面
摘要 要实现一个可以接收参数的HTTP服务器,您可以使用Python标准库中的http.server模块。该模块提供了一个简单的HTTP服务器,可以用于开发和测试Web应用程序。 下面是一个示例代码,它实现了一个可以接收参数的HTTP服务器: 代码…...
力矩传感器模拟量与ADC采集输出数字量之间的关系
力矩传感器在测量力矩时,会输出一个模拟信号,通常是一个电压或电流信号。这个模拟信号的大小会根据所测量的力矩变化而变化。 ADC(模数转换器)是一种电子设备,可以将模拟信号转换为数字信号。ADC通过采样和量化模拟信…...
Confluence 解决PDF导出乱码问题
1.原因 PDF导出乱码是因为由于服务器缺少必要字体 2.解决办法 下载字体文件将字体文件重命名为simhei.ttf Confluence→管理→PDF导出语言支持,导入字体即可...
visual studio Qt 开发环境中手动添加 Q_OBJECT 导致编译时出错的问题
问题简述 创建项目的时候,已经添加了类文件,前期认为不需要信号槽,就没有添加宏Q_OBJECT,后面项目需要,又加入了宏Q_OBJECT,但是发现只是添加了一个宏Q_OBJECT,除此之外没有改动其它的代码,原本…...
Addressable使用指南
1、基础用法就不再赘述了,重要的属性配置: Disable Catalog Update on Startup:禁用时在初始化Addressables的时候自动更新远程的catalog(启用后可以通过代码 Addressables.CheckForCatalogUpdates()更新) Use…...
【力扣每日一题】2023.10.22 做菜顺序
目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 给我们一个数组表示每个菜的满意度,我们可以指定做哪些菜以及做的顺序,需要我们凑到一个系数的最大值,…...
MySQL 排名函数 RANK, DENSE_RANK, ROW_NUMBER
文章目录 1 排名函数有哪些?2 SQL 代码实现2.1 RANK2.2 DENSE_RANK2.3 ROW_NUMBER 1 排名函数有哪些? RANK(): 并列跳跃排名, 并列即相同的值, 相同的值保留重复名次, 遇到下一个不同值时, 跳跃到总共的排名DENSE_RANK(): 并列连续排序, 并列即相同的值, 相同的值保留重复名…...
avi视频协议的理解
可以把avi文件理解为由无数个struct结构组成的: 1. struct avifile { RIFF, AVI, struct. movi, struct hdrl} 2. struct hdrl { LIST, hdal, struct avih, struct stream0,struct stream1,struct stream2}; 3. struct stream {LIST …...
教你注册chrome开发者账号,并发布chrome浏览器插件。
本篇文章主要讲解,注册chrome开发者账号,及发布chrome浏览器插件的流程。包含插件的打包和上传。 日期:2023年10月22日 作者:任聪聪 一、前提准备:注册chrome开发者账号 说明:注册需要5美元,一…...
基于孔雀优化的BP神经网络(分类应用) - 附代码
基于孔雀优化的BP神经网络(分类应用) - 附代码 文章目录 基于孔雀优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.孔雀优化BP神经网络3.1 BP神经网络参数设置3.2 孔雀算法应用 4.测试结果:5.M…...
支付宝小程序介入人脸识别(金融级--前端部分)
在这里只做前端部分说明: 详情参考文档:如何通过集成支付宝小程序唤起实人认证服务_实人认证-阿里云帮助中心 操作步骤 调用 API 发起认证。 发起认证服务。 调用 startBizService 接口请求认证。 function startAPVerify(options, callback) {my.call(startBizService, {n…...
设置Oracle环境变量
打开系统变量 1.ORACLE_HOME: 新建一个变量home,再在path中添加:%ORACLE_HOME%\BIN 变量名: ORACLE_HOME 变量值: D:\app\chenzhi\product\11.2.0\dbhome_2(自己的存放地址) 2.NLS_LANG&am…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...
DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...
