当前位置: 首页 > news >正文

OpenCV实现物体尺寸的测量

一 ,项目分析

物体尺寸测量的思路是找一个确定尺寸的物体作为参照物,根据已知的计算未知物体尺寸。

如下图所示,绿色的板子尺寸为220*300(单位:毫米),通过程序计算白色纸片的长度。

主要是通过图像处理技术,实现对一张图片中物体的尺寸测量,具体需求如下:

  1. 读入一张图片,该图片中包含需要进行测量的物体

  2. 对图片进行边缘检测,找到所有的轮廓

  3. 在所有的轮廓中选取面积最大的轮廓,即为所要测量的物体

  4. 对该物体进行透视变换,将其变成一个矩形

  5. 在矩形中,通过线段交叉点的方式,确定出物体的高度和宽度

  6. 将高度和宽度转换成实际尺寸,并在图片上标注出来

  7. 将结果显示在屏幕上。

二,实现流程

  1. 导入必要的库:cv2和numpy。

import cv2
import numpy as np

2.定义了一些参数:缩放比例、输出图片的宽度和高度。

scale = 2
wP = 220 * scale
hP = 300 * scale

3.定义了一个函数getContours,用于获取图像中的轮廓。该函数首先将图像转换为灰度图,然后进行高斯模糊,再进行Canny边缘检测,接着进行膨胀和腐蚀操作,最后使用findContours函数找到所有的外轮廓。根据面积和拐点个数的条件进行轮廓过滤,返回过滤后的轮廓列表。

def getContours(img, cThr=[100, 100], showCanny=False, minArea=1000, filter=0, draw=False):imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1)imgCanny = cv2.Canny(imgBlur, cThr[0], cThr[1])kernel = np.ones((5, 5))imgDial = cv2.dilate(imgCanny, kernel, iterations=3)imgThre = cv2.erode(imgDial, kernel, iterations=2)if showCanny: cv2.imshow('Canny', imgThre)# 寻找所有的外轮廓_, contours, _ = cv2.findContours(imgThre, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)finalCountours = []# 遍历找到的轮廓for i in contours:area = cv2.contourArea(i)  # 轮廓的面积if area > minArea:  # 如果大于设置的最小轮廓值,就往下走peri = cv2.arcLength(i, True)  # 封闭的轮廓的长度approx = cv2.approxPolyDP(i, 0.02 * peri, True)  # 封闭轮廓的拐点bbox = cv2.boundingRect(approx)  # 找到边界框if filter > 0:  # 需不需要根据拐点个数进行过滤轮廓if len(approx) == filter:  # 拐点个数,面积,拐点位置,边界框,轮廓finalCountours.append([len(approx), area, approx, bbox, i])else:finalCountours.append([len(approx), area, approx, bbox, i])finalCountours = sorted(finalCountours, key=lambda x: x[1], reverse=True)  # 根据轮廓大小进行从大到小的排序if draw:  # 是否要画出来轮廓for con in finalCountours:cv2.drawContours(img, con[4], -1, (0, 0, 255), 3)return img, finalCountours

4.   定义了一个函数reorder,用于重新排序四个点的顺序。根据四个点的和、差值的最大值和最小值进行排序,返回重新排序后的点。

def reorder(myPoints):myPointsNew = np.zeros_like(myPoints)myPoints = myPoints.reshape((4, 2))add = myPoints.sum(1)myPointsNew[0] = myPoints[np.argmin(add)]myPointsNew[3] = myPoints[np.argmax(add)]diff = np.diff(myPoints, axis=1)myPointsNew[1] = myPoints[np.argmin(diff)]myPointsNew[2] = myPoints[np.argmax(diff)]return myPointsNew

5.    定义了一个函数warpImg,用于对图像进行透视变换。根据输入的四个点和输出图像的宽度和高度,使用getPerspectiveTransform函数计算透视变换矩阵,然后使用warpPerspective函数进行透视变换,并对变换后的图像进行裁剪。

def warpImg(img, points, w, h, pad=20):# print(points)points = reorder(points)pts1 = np.float32(points)pts2 = np.float32([[0, 0], [w, 0], [0, h], [w, h]])matrix = cv2.getPerspectiveTransform(pts1, pts2)imgWrap = cv2.warpPerspective(img, matrix, (w, h))imgWrap = imgWrap[pad:imgWrap.shape[0] - pad, pad:imgWrap.shape[1] - pad]return imgWrap

6.    定义了一个函数findDis,用于计算两个点之间的距离。

def findDis(pts1, pts2):return ((pts2[0] - pts1[0]) ** 2 + (pts2[1] - pts1[1]) ** 2) ** 0.5

7.   读取输入的图像,并将其缩放到指定的尺寸。

path = 'E:\All_in\opencv\chicun.png'
img = cv2.imread(path)
img = cv2.resize(img, (0, 0), None, 0.18, 0.18)

8.    使用getContours函数获取图像中的轮廓,设定最小轮廓面积为8000,拐点个数为4,返回过滤后的轮廓列表。

img, conts = getContours(img, minArea=8000, filter=4)

9.   判断是否存在轮廓,若存在,则找到最大轮廓的拐点位置,使用warpImg函数对图像进行透视变换,并返回变换后的图像。

if len(conts) != 0:biggest = conts[0][2]  # 最大轮廓的拐点位置# print(biggest)imgWrap = warpImg(img, biggest, wP, hP)

10.    对变换后的图像再次使用getContours函数获取轮廓,设定最小轮廓面积为2000,拐点个数为4,返回过滤后的轮廓列表。

    imgContours2, conts2 = getContours(imgWrap, minArea=2000, filter=4, cThr=[50, 50])

11.    遍历过滤后的轮廓列表,对每个轮廓绘制多边形和箭头,并计算出两个方向的长度,然后在图像上标注长度信息。

   if len(conts) != 0:for obj in conts2:cv2.polylines(imgContours2, [obj[2]], True, (0, 255, 0), 2)nPoints = reorder(obj[2])nW = round((findDis(nPoints[0][0] // scale, nPoints[1][0] // scale) / 10), 1)nH = round((findDis(nPoints[0][0] // scale, nPoints[2][0] // scale) / 10), 1)# 创建箭头cv2.arrowedLine(imgContours2, (nPoints[0][0][0], nPoints[0][0][1]), (nPoints[1][0][0], nPoints[1][0][1]),(255, 0, 255), 3, 8, 0, 0.05)cv2.arrowedLine(imgContours2, (nPoints[0][0][0], nPoints[0][0][1]), (nPoints[2][0][0], nPoints[2][0][1]),(255, 0, 255), 3, 8, 0, 0.05)x, y, w, h = obj[3]cv2.putText(imgContours2, '{}cm'.format(nW), (x + 30, y - 10), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1,(255, 0, 255), 2)cv2.putText(imgContours2, '{}cm'.format(nH), (x - 70, y + h // 2), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1,(255, 0, 255), 2)

12 . 显示结果图像和原始图像,并等待按下任意键关闭窗口。

​
cv2.imshow('background', imgContours2)cv2.imshow('Original', img)
cv2.waitKey(0)​

三 ,结果展示

四 ,应用前景

  1. 工业测量:在工业领域中,Opencv测尺寸可以用于检测零件尺寸是否符合规格要求。比如,在生产线上,可以通过拍摄零件图片,利用Opencv测量零件的长度、宽度、直径等参数,以确保产品质量。

  2. 医学影像:Opencv测尺寸可以应用于医学影像领域中,例如在CT、MRI等医学影像中,测量肿瘤大小、血管直径等。这对于医生来说是非常重要的,可以帮助他们做出准确的诊断和治疗方案。

  3. 建筑测量:在建筑和房地产领域中,Opencv测尺寸可以用于测量建筑物的尺寸、房间面积等。通过拍摄建筑物的照片,利用Opencv进行测量,可以帮助建筑师、设计师和房地产开发商进行规划和设计。

  4. 车辆测量:Opencv测尺寸可以应用于交通领域,例如测量车辆的长度、宽度、高度等。这对于道路设计、桥梁设计、停车场规划等方面是非常重要的。

  5. 教育培训:Opencv测尺寸可以用于教育培训领域中,例如在物理实验中测量物体的大小、重量等。通过利用Opencv进行测量,可以帮助学生更直观地理解和掌握物理概念。

相关文章:

OpenCV实现物体尺寸的测量

一 ,项目分析 物体尺寸测量的思路是找一个确定尺寸的物体作为参照物,根据已知的计算未知物体尺寸。 如下图所示,绿色的板子尺寸为220*300(单位:毫米),通过程序计算白色纸片的长度。 主要是通过…...

投资研报的优质网站

投资研报:https://www.zhihu.com/question/357713923/answer/2304672553...

每日刷题|贪心算法初识

食用指南:本文为作者刷题中认为有必要记录的题目 推荐专栏:每日刷题 ♈️今日夜电波:悬溺—葛东琪 0:34 ━━━━━━️💟──────── 3:17 &#x1f…...

[python]如何操作Outlook实现邮件自动化

【背景】 邮件自动化存在很多需求场景,有的场景希望会出现Outlook窗口在发送前进行一下人工检查等等的人为干预,有的则希望定时直接发送,有的需要加附件等等。本篇讨论用Python覆盖这些Outlook邮件自动化场景的方法。 【解决方法】 首先Outlook和SMTP的邮件自动化方法所使…...

2008-2021年上市公司实体企业金融化程度测算数据(原始数据+stata代码)

2008-2021年上市公司实体企业金融化程度测算(原始数据stata代码) 1、时间:2008-2021年 2、指标:股票代码、年份、交易性金融资产、衍生金融资产、发放贷款及垫款净额、可供出售金融资产净额、持有至到期投资净额、长期债权投资净…...

day02_numpy_demo

Numpy Numpy的优势ndarray属性基本操作 ndarray.func() numpy.func()ndarray的运算:逻辑运算、统计运算、数组间运算合并、分割、IO操作、数据处理,不过这个一般使用的是pandas Numpy的优势 Numpy numerical数值化 python 数值计算的python库,用于快…...

LeetCode 414. Third Maximum Number【数组】简单

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...

FPGA时序分析与约束(6)——综合的基础知识

在使用时序约束的设计过程中,综合(synthesis)是第一步。 一、综合的解释 在电子设计中,综合是指完成特定功能的门级网表的实现。除了特定功能,综合的过程可能还要满足某种其他要求,如功率、操作频率等。 有…...

Python实现一个简单的http服务,Url传参输出html页面

摘要 要实现一个可以接收参数的HTTP服务器,您可以使用Python标准库中的http.server模块。该模块提供了一个简单的HTTP服务器,可以用于开发和测试Web应用程序。 下面是一个示例代码,它实现了一个可以接收参数的HTTP服务器: 代码…...

力矩传感器模拟量与ADC采集输出数字量之间的关系

力矩传感器在测量力矩时,会输出一个模拟信号,通常是一个电压或电流信号。这个模拟信号的大小会根据所测量的力矩变化而变化。 ADC(模数转换器)是一种电子设备,可以将模拟信号转换为数字信号。ADC通过采样和量化模拟信…...

Confluence 解决PDF导出乱码问题

1.原因 PDF导出乱码是因为由于服务器缺少必要字体 2.解决办法 下载字体文件将字体文件重命名为simhei.ttf Confluence→管理→PDF导出语言支持,导入字体即可...

visual studio Qt 开发环境中手动添加 Q_OBJECT 导致编译时出错的问题

问题简述 创建项目的时候,已经添加了类文件,前期认为不需要信号槽,就没有添加宏Q_OBJECT,后面项目需要,又加入了宏Q_OBJECT,但是发现只是添加了一个宏Q_OBJECT,除此之外没有改动其它的代码,原本…...

Addressable使用指南

1、基础用法就不再赘述了,重要的属性配置: Disable Catalog Update on Startup:禁用时在初始化Addressables的时候自动更新远程的catalog(启用后可以通过代码 Addressables.CheckForCatalogUpdates()更新) Use…...

【力扣每日一题】2023.10.22 做菜顺序

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 给我们一个数组表示每个菜的满意度,我们可以指定做哪些菜以及做的顺序,需要我们凑到一个系数的最大值&#xff0c…...

MySQL 排名函数 RANK, DENSE_RANK, ROW_NUMBER

文章目录 1 排名函数有哪些?2 SQL 代码实现2.1 RANK2.2 DENSE_RANK2.3 ROW_NUMBER 1 排名函数有哪些? RANK(): 并列跳跃排名, 并列即相同的值, 相同的值保留重复名次, 遇到下一个不同值时, 跳跃到总共的排名DENSE_RANK(): 并列连续排序, 并列即相同的值, 相同的值保留重复名…...

avi视频协议的理解

可以把avi文件理解为由无数个struct结构组成的: 1. struct avifile { RIFF, AVI, struct. movi, struct hdrl} 2. struct hdrl { LIST, hdal, struct avih, struct stream0,struct stream1,struct stream2}; 3. struct stream {LIST …...

教你注册chrome开发者账号,并发布chrome浏览器插件。

本篇文章主要讲解,注册chrome开发者账号,及发布chrome浏览器插件的流程。包含插件的打包和上传。 日期:2023年10月22日 作者:任聪聪 一、前提准备:注册chrome开发者账号 说明:注册需要5美元,一…...

基于孔雀优化的BP神经网络(分类应用) - 附代码

基于孔雀优化的BP神经网络(分类应用) - 附代码 文章目录 基于孔雀优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.孔雀优化BP神经网络3.1 BP神经网络参数设置3.2 孔雀算法应用 4.测试结果:5.M…...

支付宝小程序介入人脸识别(金融级--前端部分)

在这里只做前端部分说明: 详情参考文档:如何通过集成支付宝小程序唤起实人认证服务_实人认证-阿里云帮助中心 操作步骤 调用 API 发起认证。 发起认证服务。 调用 startBizService 接口请求认证。 function startAPVerify(options, callback) {my.call(startBizService, {n…...

设置Oracle环境变量

打开系统变量 1.ORACLE_HOME: 新建一个变量home,再在path中添加:%ORACLE_HOME%\BIN 变量名: ORACLE_HOME 变量值: D:\app\chenzhi\product\11.2.0\dbhome_2(自己的存放地址) 2.NLS_LANG&am…...

总结HTML中的文本标签

总结HTML中的文本标签 文章目录 总结HTML中的文本标签引言一、标题标签(h1 - h6)语法示例使用建议 二、段落标签(p)语法示例使用建议 三、文本节点标签(span)语法示例使用建议 四、粗体标签(b&a…...

uniapp 设置手机不息屏

在使用 UniApp 开发应用时,有时需要在设备长时间未操作时实现息屏保护功能,以节省电量和保护屏幕。以下是如何在 UniApp 中实现这一功能的步骤。 示例一 // 保持屏幕常亮 uni.setKeepScreenOn({keepScreenOn: true });// 监听应用进入后台事件 uni.onH…...

用HTML5 Canvas打造交互式心形粒子动画:从基础到优化实战

用HTML5 Canvas打造交互式心形粒子动画:从基础到优化实战 引言 在Web交互设计中,粒子动画因其动态美感和视觉吸引力被广泛应用于节日特效、情感化界面等场景。本文将通过实战案例,详细讲解如何使用HTML5 Canvas和JavaScript实现一个「心之律…...

一个简单的德劳内三角剖分实现

德劳内(Delaunay)三角剖分是一种经典的将点集进行三角网格化预处理的手段,在NavMesh、随机地牢生成等场景下都有应用。 具体内容百度一大堆,就不介绍了。 比较知名的算法是Bowyer-Watson算法,也就是逐点插入法。 下雨闲…...

Vue3学习(4)- computed的使用

1. 简述与使用 作用:computed 用于基于响应式数据派生出新值,其值会自动缓存并在依赖变化时更新。 ​缓存机制​:依赖未变化时直接返回缓存值,避免重复计算(通过 _dirty 标志位实现)。​响应式更新​&…...

如何在Unity中实现点击一个按钮跳转到哔哩哔哩

1.创建一个按钮 2.编写一个脚本(你可以把链接改成你想要跳转的网站) using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI;public class JumpToBilibili : MonoBehaviour {void Start(){gameObject.…...

Linux 系统、代码与服务器进阶知识深度解析

在数字化时代,Linux 系统凭借其开源、稳定、安全的特性,成为服务器领域和软件开发的核心支柱。除了算法优化技巧,Linux 系统在网络服务、容器化技术、服务器安全等方面也蕴含着丰富的知识和实用技术。接下来,我们将深入探讨这些领…...

11-Oracle 23ai Vector Embbeding和ONNX

Embedding (模型嵌入)是 AI 领域的一个核心概念 一、Embedding(嵌入)的含义 Embedding 是一种将 非结构化数据​(如文本、图像、音频、视频)转换为 数值向量的技术。 其核心是通过 嵌入模型​(…...

嵌入式面试高频!!!C语言(四)(嵌入式八股文,嵌入式面经)

更多嵌入式面试文章见下面连接,会不断更新哦!!关注一下谢谢!!!! ​​​​​​​https://blog.csdn.net/qq_61574541/category_12976911.html?fromshareblogcolumn&sharetypeblogcolumn&…...

PPT转图片拼贴工具 v4.3

软件介绍 这个软件就是将PPT文件转换为图片并且拼接起来。 效果展示 支持导入文件和支持导入文件夹,也支持手动输入文件/文件夹路径 软件界面 这一次提供了源码和开箱即用版本,exe就是直接用就可以了。 软件源码 import os import re import sys …...