当前位置: 首页 > news >正文

【力扣每日一题】2023.10.22 做菜顺序

目录

题目:

示例:

分析:

代码:


题目:

示例:

分析:

给我们一个数组表示每个菜的满意度,我们可以指定做哪些菜以及做的顺序,需要我们凑到一个系数的最大值,系数的公式为 菜的满意度 * 轮到做完这盘菜所耗的时间包括等待时间。

我们可以知道,决定这个系数大小的有两个因素,第一个是满意度,另一个其实是做菜的顺序,越是后面做的菜,第二个因素就越大,系数也就越大。

所以我们定下主基调了,满意度越大的菜我们就放到越后面去做,因此我们可以先对满意度进行排序。做菜的顺序我们就定下来了,剩下的问题就是选择做哪些菜。

比较直观的选择就是我们只选择满意度为正数的菜,因为如果选择了负数,那么会导致总体的满意度减少。

但是事实是有时候我们选择满意度为负数的菜反而会让总体的满意度上升,因为如果我们先做了负数的菜,后面再做满意度高的菜,则会使得等待时间变久,这样子满意度系数也会更大。

如果满意度为正,我们就必须选择要做这盘菜,重点在于我们应该如何挑选满意度为负数的菜。

一盘菜能贡献的满意度系数为满意度乘上等待时间,那么是不是就说明在一盘菜之前每多做一盘菜,那么这盘菜的满意度系数就会多加上这盘菜的满意度,转换成数学式子就是  i * ( j + 1 ) = i * j + i 。

我们逆向思考一下,我们一开始说满意度越高的菜我们越后面做,这个是没问题的,但是不利于我们做这道题,我们可以先假设我做满意度最高的菜,如果后面的菜我需要做了,我再反悔一下,我改成后面的菜变成第一个做的菜,而一开始先做的满意度最高的菜我改成第二个做的,这时我只需要将系数总和再加上满意度最高的菜的满意度就可以完成反悔的操作。

 也就是说,我之后每做一盘菜,那么我们的系数之和就会加上之前已经做过的菜的满意度之和了,这也就是前缀和。

因此如果遇到了满意度为负数的菜,只要这个菜的满意度加上前缀和大于0了,那么总的满意度系数还是会增加的,我们就可以去做这盘菜。

这样做菜的顺序和做菜的选择我们都搞定了,这道题也就迎刃而解了。

代码:

class Solution {
public:int maxSatisfaction(vector<int>& satisfaction) {int res=0;//前缀和int cache=0;int n=satisfaction.size();//从大到小排序sort(satisfaction.begin(),satisfaction.end(),[](auto &a,auto &b){return a>b;});for(int i=0;i<n;++i){//如果是正数,则肯定是正收益,那么直接加上//如果是负数,如果扣掉前缀和之后仍有盈余,那么也加上if(satisfaction[i]>=0||-1*satisfaction[i]<cache){cache+=satisfaction[i];res+=cache;}}return res;}
};

相关文章:

【力扣每日一题】2023.10.22 做菜顺序

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 给我们一个数组表示每个菜的满意度&#xff0c;我们可以指定做哪些菜以及做的顺序&#xff0c;需要我们凑到一个系数的最大值&#xff0c…...

MySQL 排名函数 RANK, DENSE_RANK, ROW_NUMBER

文章目录 1 排名函数有哪些?2 SQL 代码实现2.1 RANK2.2 DENSE_RANK2.3 ROW_NUMBER 1 排名函数有哪些? RANK(): 并列跳跃排名, 并列即相同的值, 相同的值保留重复名次, 遇到下一个不同值时, 跳跃到总共的排名DENSE_RANK(): 并列连续排序, 并列即相同的值, 相同的值保留重复名…...

avi视频协议的理解

可以把avi文件理解为由无数个struct结构组成的&#xff1a; 1. struct avifile { RIFF, AVI, struct. movi, struct hdrl} 2. struct hdrl { LIST, hdal, struct avih, struct stream0,struct stream1,struct stream2}; 3. struct stream {LIST …...

教你注册chrome开发者账号,并发布chrome浏览器插件。

本篇文章主要讲解&#xff0c;注册chrome开发者账号&#xff0c;及发布chrome浏览器插件的流程。包含插件的打包和上传。 日期&#xff1a;2023年10月22日 作者&#xff1a;任聪聪 一、前提准备&#xff1a;注册chrome开发者账号 说明&#xff1a;注册需要5美元&#xff0c;一…...

基于孔雀优化的BP神经网络(分类应用) - 附代码

基于孔雀优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于孔雀优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.孔雀优化BP神经网络3.1 BP神经网络参数设置3.2 孔雀算法应用 4.测试结果&#xff1a;5.M…...

支付宝小程序介入人脸识别(金融级--前端部分)

在这里只做前端部分说明: 详情参考文档:如何通过集成支付宝小程序唤起实人认证服务_实人认证-阿里云帮助中心 操作步骤 调用 API 发起认证。 发起认证服务。 调用 startBizService 接口请求认证。 function startAPVerify(options, callback) {my.call(startBizService, {n…...

设置Oracle环境变量

打开系统变量 1.ORACLE_HOME&#xff1a; 新建一个变量home&#xff0c;再在path中添加&#xff1a;%ORACLE_HOME%\BIN 变量名&#xff1a; ORACLE_HOME 变量值&#xff1a; D:\app\chenzhi\product\11.2.0\dbhome_2&#xff08;自己的存放地址&#xff09; 2.NLS_LANG&am…...

大模型之Chat Markup Language

背景 在笔者应用大模型的场景中&#xff0c;对话模型(即大模型-chat系列)通常具有比较重要的地位&#xff0c;我们通常基于与大模型进行对话来获取我们希望理解的知识。然而大模型对话是依据何种数据格式来进行训练的&#xff0c;他们的数据为什么这么来进行组织&#xff0c;本…...

分布式链路追踪系统Skywalking的部署和应用

一&#xff0c;背景 随着业务的扩张&#xff0c;系统变得越来越复杂&#xff0c;由前端、app、api、微服务、数据库、缓存、消息队列、关系数据库、列式数据库等构成了繁杂的分布式网络。 当出现一个调用失败的问题时&#xff0c;要定位异常在哪个服务&#xff0c;需要进入每一…...

canvas绘制动态视频并且在视频上加上自定义logo

实现的效果&#xff1a;可以在画布上播放动态视频&#xff0c;并且加上自定义的图片logo放在视频的右下角 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthd…...

分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于BiGRU-AdaBoos…...

Kotlin 协程(线程)切换

常用协程切换函数 withContext 是Kotlin协程中的一个常用协程函数&#xff0c;它的作用是切换协程的执行上下文&#xff08;线程或调度器&#xff09;。具体来说&#xff0c;withContext 的主要功能如下&#xff1a; 切换执行上下文&#xff1a;withContext 允许你从一个执行上…...

分布式Trace:横跨几十个分布式组件的慢请求要如何排查?

目录 前言 一、问题的出现&#xff1f; 二、一体化架构中的慢请求排查如何做 三、分布式 Trace原理 四、如何来做分布式 Trace 前言 在分布式服务架构下&#xff0c;一个 Web 请求从网关流入&#xff0c;有可能会调用多个服务对请求进行处理&#xff0c;拿到最终结果。这个…...

【计算机毕设选题推荐】口腔助手小程序SpringBoot+Vue+小程序

前言&#xff1a;我是IT源码社&#xff0c;从事计算机开发行业数年&#xff0c;专注Java领域&#xff0c;专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 项目名 基于SpringBoot的口腔助手小程序 技术栈 SpringBootVue小程序MySQLMaven 文章目录 一、口腔…...

【C/C++笔试练习】初始化列表、构造函数、析构函数、两种排序方法、求最小公倍数

文章目录 C/C笔试练习1. 初始化列表&#xff08;1&#xff09;只能在列表初始化的变量 2.构造函数&#xff08;2&#xff09;函数体赋值&#xff08;3&#xff09;构造函数的概念&#xff08;4&#xff09;构造函数调用次数&#xff08;5&#xff09;构造函数调用次数&#xff…...

分享 | 对 电商API 平台的再思考

API 是推动现代企业数字化转型的基础。它不但连接了内部应用程序、合作伙伴和客户&#xff0c;同时也快速持续地向市场提供了各种新产品、版本和功能。 但当下还是以集中式的 API 交付为主。一个企业的对外 API 交付过程通常都是冗余而繁琐的&#xff0c;对企业内部的敏捷性、速…...

C语言--程序环境和预处理

前言 本章就是c语言的最后一个板块了&#xff0c;学完这章节&#xff0c;我们将知道写出的代码如何变成可执行程序的&#xff0c;这是非常重要的一个章节&#xff0c;那让我们一起进入本章的学习吧。 本章重点&#xff1a; 程序的翻译环境程序的执行环境详解&#xff1a;C语言程…...

深度学习笔记_5 经典卷积神经网络LeNet-5 解决MNIST数据集

1、定义LeNet-5模型&#xff0c;包括卷积层和全连接层。 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms# 导入必要的库# 定义 LeNet-5 模型 class LeNet5(nn.Module):def __init__(self):super(LeNet5, self…...

国内智能客服机器人都有哪些?

随着人工智能技术的不断发展&#xff0c;智能客服机器人已经成为了企业客户服务的重要工具。国内的智能客服机器人市场也迎来了飞速发展&#xff0c;越来越多的企业开始采用智能客服机器人来提升客户服务效率和质量。 在这篇文章中&#xff0c;我将详细介绍国内知名的智能客服机…...

Matlab/C++源码实现RGB通道与HSV通道的转换(效果对比Halcon)

HSV通道的含义 HSV通道是指图像处理中的一种颜色模型&#xff0c;它由色调&#xff08;Hue&#xff09;、饱和度&#xff08;Saturation&#xff09;和明度&#xff08;Value&#xff09;三个通道组成。色调表示颜色的种类&#xff0c;饱和度表示颜色的纯度或鲜艳程度&#xf…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...