当前位置: 首页 > news >正文

分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测

目录

    • 分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测;
2.运行环境为Matlab2020b;
3.输入多个特征,分四类,多特征分类预测;
4.data为数据集,excel数据,前12列输入,最后1列输出四类标签,运行主程序即可,所有文件放在一个文件夹。

模型描述

基于BiGRU-AdaBoost双向门控循环单元的AdaBoost多输入分类预测是一种集成学习方法。它结合了BiGRU网络和AdaBoost算法的优点,能够捕获时序数据的长期依赖性和非线性关系,并提高预测精度。
BiGRU网络是一种适用于序列数据的循环神经网络,通过门控机制可以有效地处理长期依赖性的问题。而AdaBoost是一种集成学习算法,通过加权组合多个弱学习器来提高预测准确性。将这两种方法结合起来,可以利用BiGRU网络提取序列数据的特征,然后将这些特征作为AdaBoost的输入,通过多个弱学习器的加权组合来分类。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测
%%  创建网络
layers = [ ...sequenceInputLayer(12)               % 输入层reluLayer                            % Relu激活层fullyConnectedLayer(4)               % 全连接层softmaxLayer                         % 分类层classificationLayer];%%  参数设置
options = trainingOptions('adam', ...       % Adam 梯度下降算法'MiniBatchSize', 100, ...               % 批大小'MaxEpochs', 1000, ...                  % 最大迭代次数'InitialLearnRate', 1e-2, ...           % 初始学习率'LearnRateSchedule', 'piecewise', ...   % 学习率下降'LearnRateDropFactor', 0.1, ...         % 学习率下降因子'LearnRateDropPeriod', 700, ...         % 经过700次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ...           % 每次训练打乱数据集'ValidationPatience', Inf, ...          % 关闭验证'Plots', 'training-progress', ...       % 画出曲线'Verbose', false);%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);%%  仿真预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = vec2ind(t_sim1');
T_sim2 = vec2ind(t_sim2');%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于BiGRU-AdaBoos…...

Kotlin 协程(线程)切换

常用协程切换函数 withContext 是Kotlin协程中的一个常用协程函数,它的作用是切换协程的执行上下文(线程或调度器)。具体来说,withContext 的主要功能如下: 切换执行上下文:withContext 允许你从一个执行上…...

分布式Trace:横跨几十个分布式组件的慢请求要如何排查?

目录 前言 一、问题的出现? 二、一体化架构中的慢请求排查如何做 三、分布式 Trace原理 四、如何来做分布式 Trace 前言 在分布式服务架构下,一个 Web 请求从网关流入,有可能会调用多个服务对请求进行处理,拿到最终结果。这个…...

【计算机毕设选题推荐】口腔助手小程序SpringBoot+Vue+小程序

前言:我是IT源码社,从事计算机开发行业数年,专注Java领域,专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 项目名 基于SpringBoot的口腔助手小程序 技术栈 SpringBootVue小程序MySQLMaven 文章目录 一、口腔…...

【C/C++笔试练习】初始化列表、构造函数、析构函数、两种排序方法、求最小公倍数

文章目录 C/C笔试练习1. 初始化列表(1)只能在列表初始化的变量 2.构造函数(2)函数体赋值(3)构造函数的概念(4)构造函数调用次数(5)构造函数调用次数&#xff…...

分享 | 对 电商API 平台的再思考

API 是推动现代企业数字化转型的基础。它不但连接了内部应用程序、合作伙伴和客户,同时也快速持续地向市场提供了各种新产品、版本和功能。 但当下还是以集中式的 API 交付为主。一个企业的对外 API 交付过程通常都是冗余而繁琐的,对企业内部的敏捷性、速…...

C语言--程序环境和预处理

前言 本章就是c语言的最后一个板块了,学完这章节,我们将知道写出的代码如何变成可执行程序的,这是非常重要的一个章节,那让我们一起进入本章的学习吧。 本章重点: 程序的翻译环境程序的执行环境详解:C语言程…...

深度学习笔记_5 经典卷积神经网络LeNet-5 解决MNIST数据集

1、定义LeNet-5模型,包括卷积层和全连接层。 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms# 导入必要的库# 定义 LeNet-5 模型 class LeNet5(nn.Module):def __init__(self):super(LeNet5, self…...

国内智能客服机器人都有哪些?

随着人工智能技术的不断发展,智能客服机器人已经成为了企业客户服务的重要工具。国内的智能客服机器人市场也迎来了飞速发展,越来越多的企业开始采用智能客服机器人来提升客户服务效率和质量。 在这篇文章中,我将详细介绍国内知名的智能客服机…...

Matlab/C++源码实现RGB通道与HSV通道的转换(效果对比Halcon)

HSV通道的含义 HSV通道是指图像处理中的一种颜色模型,它由色调(Hue)、饱和度(Saturation)和明度(Value)三个通道组成。色调表示颜色的种类,饱和度表示颜色的纯度或鲜艳程度&#xf…...

【C进阶】动态内存管理

一、为什么存在动态内存分配 我们之前学的都是开辟固定大小的空间,但有时候需要空间的大小只有在程序运行时才能知道,那么就引入了动态内存开辟 内存分布所在: 二、动态内存函数的介绍 2.1malloc和free 动态内存开辟的函数 void * malloc…...

神经网络的梯度优化方法

神经网络的梯度优化是深度学习中至关重要的一部分,它有助于训练神经网络以拟合数据。下面将介绍几种常见的梯度优化方法,包括它们的特点、优缺点以及原理。 梯度下降法 (Gradient Descent): 特点: 梯度下降是最基本的优化算法,它试图通过迭代…...

linux 装机教程(自用备忘)

文章目录 安装 pyenv 管理多版本 python 环境安装使用使用 pyenv 和 virtualenv 管理虚拟 python 环境 vscode 连接远程服务器tmux 美化zsh 安装 pyenv 管理多版本 python 环境 安装 (教程参考:https://www.modb.pro/db/155036) sudo apt-…...

Tensorboard安装及简单使用

Tensorboard 1. tensorboard 简单介绍2. 安装必备环境3. Tensorboard安装4. 可视化命令 1. tensorboard 简单介绍 TensorBoard是一个可视化的模块,该模块功能强大,可用于深度学习网络模型训练查看模型结构和训练效果(预测结果、网络模型结构…...

SpringCloud 微服务全栈体系(二)

第三章 Eureka 注册中心 假如我们的服务提供者 user-service 部署了多个实例,如图: 思考几个问题: order-service 在发起远程调用的时候,该如何得知 user-service 实例的 ip 地址和端口?有多个 user-service 实例地址…...

flutter 常用组件:列表ListView

文章目录 总结#1、通过构造方法直接构建 ListView 提供了一个默认构造函数 ListView,我们可以通过设置它的 children 参数,很方便地将所有的子 Widget 包含到 ListView 中。 不过,这种创建方式要求提前将所有子 Widget 一次性创建好,而不是等到它们真正在屏幕上需要显示时才…...

十四天学会C++之第七天:STL(标准模板库)

1. STL容器 什么是STL容器,为什么使用它们。向量(vector):使用向量存储数据。列表(list):使用列表实现双向链表。映射(map):使用映射实现键值对存储。 什么…...

Linux 下安装 miniconda,管理 Python 多环境

安装 miniconda 1、下载安装包 Miniconda3-py37_22.11.1-1-Linux-x86_64.sh,或者自行选择版本 2、把安装包上传到服务器上,这里放在 /home/software 3、安装 bash Miniconda3-py37_22.11.1-1-Linux-x86_64.sh 4、按回车 Welcome to Miniconda3 py37…...

Django和jQuery,实现Ajax表格数据分页展示

1.需求描述 当存在重新请求接口才能返回数据的功能时,若页面的内容很长,每次点击一个功能,页面又回到了顶部,对于用户的体验感不太友好,我们希望当用户点击这类的功能时,能直接加载到数据,请求…...

k8s认证

1. 证书介绍 服务端保留公钥和私钥,客户端使用root CA认证服务端的公钥 一共有多少证书: *Etcd: Etcd对外提供服务,要有一套etcd server证书Etcd各节点之间进行通信,要有一套etcd peer证书Kube-APIserver访问Etcd&a…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

python/java环境配置

环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...