分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测
分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测
目录
- 分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果
基本介绍
1.MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测;
2.运行环境为Matlab2020b;
3.输入多个特征,分四类,多特征分类预测;
4.data为数据集,excel数据,前12列输入,最后1列输出四类标签,运行主程序即可,所有文件放在一个文件夹。
模型描述
基于BiGRU-AdaBoost双向门控循环单元的AdaBoost多输入分类预测是一种集成学习方法。它结合了BiGRU网络和AdaBoost算法的优点,能够捕获时序数据的长期依赖性和非线性关系,并提高预测精度。
BiGRU网络是一种适用于序列数据的循环神经网络,通过门控机制可以有效地处理长期依赖性的问题。而AdaBoost是一种集成学习算法,通过加权组合多个弱学习器来提高预测准确性。将这两种方法结合起来,可以利用BiGRU网络提取序列数据的特征,然后将这些特征作为AdaBoost的输入,通过多个弱学习器的加权组合来分类。
程序设计
- 完整源码和数据获取方式:私信博主回复MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测;
%% 创建网络
layers = [ ...sequenceInputLayer(12) % 输入层reluLayer % Relu激活层fullyConnectedLayer(4) % 全连接层softmaxLayer % 分类层classificationLayer];%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MiniBatchSize', 100, ... % 批大小'MaxEpochs', 1000, ... % 最大迭代次数'InitialLearnRate', 1e-2, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率下降'LearnRateDropFactor', 0.1, ... % 学习率下降因子'LearnRateDropPeriod', 700, ... % 经过700次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ... % 每次训练打乱数据集'ValidationPatience', Inf, ... % 关闭验证'Plots', 'training-progress', ... % 画出曲线'Verbose', false);%% 训练模型
net = trainNetwork(p_train, t_train, layers, options);%% 仿真预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test ); %% 数据反归一化
T_sim1 = vec2ind(t_sim1');
T_sim2 = vec2ind(t_sim2');%% 性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:

分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测
分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于BiGRU-AdaBoost双向门控循环单元结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于BiGRU-AdaBoos…...
Kotlin 协程(线程)切换
常用协程切换函数 withContext 是Kotlin协程中的一个常用协程函数,它的作用是切换协程的执行上下文(线程或调度器)。具体来说,withContext 的主要功能如下: 切换执行上下文:withContext 允许你从一个执行上…...

分布式Trace:横跨几十个分布式组件的慢请求要如何排查?
目录 前言 一、问题的出现? 二、一体化架构中的慢请求排查如何做 三、分布式 Trace原理 四、如何来做分布式 Trace 前言 在分布式服务架构下,一个 Web 请求从网关流入,有可能会调用多个服务对请求进行处理,拿到最终结果。这个…...

【计算机毕设选题推荐】口腔助手小程序SpringBoot+Vue+小程序
前言:我是IT源码社,从事计算机开发行业数年,专注Java领域,专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 项目名 基于SpringBoot的口腔助手小程序 技术栈 SpringBootVue小程序MySQLMaven 文章目录 一、口腔…...

【C/C++笔试练习】初始化列表、构造函数、析构函数、两种排序方法、求最小公倍数
文章目录 C/C笔试练习1. 初始化列表(1)只能在列表初始化的变量 2.构造函数(2)函数体赋值(3)构造函数的概念(4)构造函数调用次数(5)构造函数调用次数ÿ…...

分享 | 对 电商API 平台的再思考
API 是推动现代企业数字化转型的基础。它不但连接了内部应用程序、合作伙伴和客户,同时也快速持续地向市场提供了各种新产品、版本和功能。 但当下还是以集中式的 API 交付为主。一个企业的对外 API 交付过程通常都是冗余而繁琐的,对企业内部的敏捷性、速…...

C语言--程序环境和预处理
前言 本章就是c语言的最后一个板块了,学完这章节,我们将知道写出的代码如何变成可执行程序的,这是非常重要的一个章节,那让我们一起进入本章的学习吧。 本章重点: 程序的翻译环境程序的执行环境详解:C语言程…...
深度学习笔记_5 经典卷积神经网络LeNet-5 解决MNIST数据集
1、定义LeNet-5模型,包括卷积层和全连接层。 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms# 导入必要的库# 定义 LeNet-5 模型 class LeNet5(nn.Module):def __init__(self):super(LeNet5, self…...

国内智能客服机器人都有哪些?
随着人工智能技术的不断发展,智能客服机器人已经成为了企业客户服务的重要工具。国内的智能客服机器人市场也迎来了飞速发展,越来越多的企业开始采用智能客服机器人来提升客户服务效率和质量。 在这篇文章中,我将详细介绍国内知名的智能客服机…...

Matlab/C++源码实现RGB通道与HSV通道的转换(效果对比Halcon)
HSV通道的含义 HSV通道是指图像处理中的一种颜色模型,它由色调(Hue)、饱和度(Saturation)和明度(Value)三个通道组成。色调表示颜色的种类,饱和度表示颜色的纯度或鲜艳程度…...

【C进阶】动态内存管理
一、为什么存在动态内存分配 我们之前学的都是开辟固定大小的空间,但有时候需要空间的大小只有在程序运行时才能知道,那么就引入了动态内存开辟 内存分布所在: 二、动态内存函数的介绍 2.1malloc和free 动态内存开辟的函数 void * malloc…...
神经网络的梯度优化方法
神经网络的梯度优化是深度学习中至关重要的一部分,它有助于训练神经网络以拟合数据。下面将介绍几种常见的梯度优化方法,包括它们的特点、优缺点以及原理。 梯度下降法 (Gradient Descent): 特点: 梯度下降是最基本的优化算法,它试图通过迭代…...

linux 装机教程(自用备忘)
文章目录 安装 pyenv 管理多版本 python 环境安装使用使用 pyenv 和 virtualenv 管理虚拟 python 环境 vscode 连接远程服务器tmux 美化zsh 安装 pyenv 管理多版本 python 环境 安装 (教程参考:https://www.modb.pro/db/155036) sudo apt-…...

Tensorboard安装及简单使用
Tensorboard 1. tensorboard 简单介绍2. 安装必备环境3. Tensorboard安装4. 可视化命令 1. tensorboard 简单介绍 TensorBoard是一个可视化的模块,该模块功能强大,可用于深度学习网络模型训练查看模型结构和训练效果(预测结果、网络模型结构…...

SpringCloud 微服务全栈体系(二)
第三章 Eureka 注册中心 假如我们的服务提供者 user-service 部署了多个实例,如图: 思考几个问题: order-service 在发起远程调用的时候,该如何得知 user-service 实例的 ip 地址和端口?有多个 user-service 实例地址…...
flutter 常用组件:列表ListView
文章目录 总结#1、通过构造方法直接构建 ListView 提供了一个默认构造函数 ListView,我们可以通过设置它的 children 参数,很方便地将所有的子 Widget 包含到 ListView 中。 不过,这种创建方式要求提前将所有子 Widget 一次性创建好,而不是等到它们真正在屏幕上需要显示时才…...

十四天学会C++之第七天:STL(标准模板库)
1. STL容器 什么是STL容器,为什么使用它们。向量(vector):使用向量存储数据。列表(list):使用列表实现双向链表。映射(map):使用映射实现键值对存储。 什么…...
Linux 下安装 miniconda,管理 Python 多环境
安装 miniconda 1、下载安装包 Miniconda3-py37_22.11.1-1-Linux-x86_64.sh,或者自行选择版本 2、把安装包上传到服务器上,这里放在 /home/software 3、安装 bash Miniconda3-py37_22.11.1-1-Linux-x86_64.sh 4、按回车 Welcome to Miniconda3 py37…...

Django和jQuery,实现Ajax表格数据分页展示
1.需求描述 当存在重新请求接口才能返回数据的功能时,若页面的内容很长,每次点击一个功能,页面又回到了顶部,对于用户的体验感不太友好,我们希望当用户点击这类的功能时,能直接加载到数据,请求…...

k8s认证
1. 证书介绍 服务端保留公钥和私钥,客户端使用root CA认证服务端的公钥 一共有多少证书: *Etcd: Etcd对外提供服务,要有一套etcd server证书Etcd各节点之间进行通信,要有一套etcd peer证书Kube-APIserver访问Etcd&a…...
Qt Test功能及架构
Qt Test 是 Qt 框架中的单元测试模块,在 Qt 6.0 中提供了全面的测试功能。 一、主要功能 核心功能 1. 单元测试框架 提供完整的单元测试基础设施 支持测试用例、测试套件的组织和执行 包含断言宏和测试结果收集 2. 测试类型支持 单元测试:对单个函…...
clickhouse 和 influxdb 选型
以下是 ClickHouse、InfluxDB 和 HBase 在体系架构、存储引擎、数据类型、性能及场景的详细对比分析: 🏗️ 一、体系架构对比 维度ClickHouseInfluxDBHBase设计目标大规模OLAP分析,高吞吐复杂查询 时序数据采集与监控,优化时间线管理高吞吐随机…...

GOOUUU ESP32-S3-CAM 果云科技开发板开发指南(一)(超详细!)Vscode+espidf 通过摄像头拍摄照片并存取到SD卡中,文末附源码
看到最近好玩的开源项目比较多,就想要学习一下esp32的开发,目前使用比较多的ide基本上是arduino、esp-idf和platformio,前者编译比较慢,后两者看到开源大佬的项目做的比较多,所以主要学习后两者。 本次使用的硬件是GO…...
网络通讯知识——通讯分层介绍,gRPC,RabbitMQ分层
网络通讯分层 网络通讯分层是为了将复杂的网络通信问题分解为多个独立、可管理的层次,每个层次专注于特定功能。目前主流的分层模型包括OSI七层模型和TCP/IP四层(或五层)模型,以下是详细解析: 一、OSI七层模型&#…...

【C++进阶篇】C++11新特性(下篇)
C函数式编程黑魔法:Lambda与包装器实战全解析 一. lambda表达式1.1 仿函数使用1.2 lambda表达式的语法1.3 lambda表达式使用1.3.1 传值和传引用捕捉1.3.2 隐式捕捉1.3.3 混合捕捉 1.4 lambda表达式原理1.5 lambda优点及建议 二. 包装器2.1 function2.2 bind绑定 三.…...

学习路之php--性能优化
一、php周边优化 二、代码级优化 变量管理 及时unset()释放大数组/对象,减少内存占用局部变量访问速度比全局变量快约2倍,优先使用局部变量大数组采用引用传递(&$var)避免内存 循环优化 预计算循环次数: …...

亚远景科技助力东风日产通过ASPICE CL2评估
热烈祝贺东风日产通过ASPICE CL2评估 近日,东风日产PK1B VCM热管理项目成功通过ASPICE CL2级能力评估,标志着东风日产在汽车电子软件研发管理体系及技术创新能力上已达到国际领先水平,为其全球化布局注入强劲动能。 ASPICE:国际竞…...

联想拯救者R9000P 网卡 Realtek 8852CE Ubuntu/Mint linux 系统睡眠后,无线网卡失效
联想拯救者R9000P 网卡型号 Realtek PCle GbE Family Controller Realtek 8852CE WiFi 6E PCI-E NIC 系统版本 Ubuntu 24.04 / mint 22.1 问题现象 rtw89_8852ce,Link is Down,xtal si not ready,mac init fail,xtal si not …...

FineReport模板认证找不到模板
水善利万物而不争,处众人之所恶,故几于道💦 文章目录 1.现象及排查过程2. 解决办法 1.现象及排查过程 FR模板认证下面找不到模板 由于是集群部署的FR,所以后台查看了sftp服务器,测试连接,连接成功。 但是…...

Dify工具插件开发和智能体开发全流程
想象一下,你正在开发一个 AI 聊天机器人,想让它能实时搜索 Google、生成图像,甚至自动规划任务,但手动集成这些功能耗时又复杂。Dify 来了!这个开源的 AI 应用平台让你轻松开发工具插件和智能体策略插件,快…...