当前位置: 首页 > news >正文

自然语言处理---Transformer机制详解之BERT模型特点

1 BERT的优点和缺点

1.1 BERT的优点

  • 通过预训练, 加上Fine-tunning, 在11项NLP任务上取得最优结果.
  • BERT的根基源于Transformer, 相比传统RNN更加高效, 可以并行化处理同时能捕捉长距离的语义和结构依赖.
  • BERT采用了Transformer架构中的Encoder模块, 不仅仅获得了真正意义上的bidirectional context, 而且为后续微调任务留出了足够的调整空间.

1.2 BERT的缺点

  • BERT模型过于庞大, 参数太多, 不利于资源紧张的应用场景, 也不利于上线的实时处理.
  • BERT目前给出的中文模型中, 是以字为基本token单位的, 很多需要词向量的应用无法直接使用. 同时该模型无法识别很多生僻词, 只能以UNK代替.
  • BERT中第一个预训练任务MLM中, [MASK]标记只在训练阶段出现, 而在预测阶段不会出现, 这就造成了一定的信息偏差, 因此训练时不能过多的使用[MASK], 否则会影响模型的表现.
  • 按照BERT的MLM任务中的约定, 每个batch数据中只有15%的token参与了训练, 被模型学习和预测, 所以BERT收敛的速度比left-to-right模型要慢很多(left-to-right模型中每一个token都会参与训练).

2 BERT的MLM任务

2.1 80%, 10%, 10%的策略

  • 首先, 如果所有参与训练的token被100%的[MASK], 那么在fine-tunning的时候所有单词都是已知的, 不存在[MASK], 那么模型就只能根据其他token的信息和语序结构来预测当前词, 而无法利用到这个词本身的信息, 因为它们从未出现在训练过程中, 等于模型从未接触到它们的信息, 等于整个语义空间损失了部分信息. 采用80%的概率下应用[MASK], 既可以让模型去学着预测这些单词, 又以20%的概率保留了语义信息展示给模型.
  • 保留下来的信息如果全部使用原始token, 那么模型在预训练的时候可能会偷懒, 直接照抄当前token信息. 采用10%概率下random token来随机替换当前token, 会让模型不能去死记硬背当前的token, 而去尽力学习单词周边的语义表达和远距离的信息依赖, 尝试建模完整的语言信息.
  • 最后再以10%的概率保留原始的token, 意义就是保留语言本来的面貌, 让信息不至于完全被遮掩, 使得模型可以"看清"真实的语言面貌.

3 BERT处理长文本的方法

  • 首选要明确一点, BERT预训练模型所接收的最大sequence长度是512.
  • 那么对于长文本(文本长度超过512的句子), 就需要特殊的方式来构造训练样本. 核心就是如何进行截断.
    • head-only方式: 这是只保留长文本头部信息的截断方式, 具体为保存前510个token (要留两个位置给[CLS]和[SEP]).
    • tail-only方式: 这是只保留长文本尾部信息的截断方式, 具体为保存最后510个token (要留两个位置给[CLS]和[SEP]).
    • head+only方式: 选择前128个token和最后382个token (文本总长度在800以内), 或者前256个token和最后254个token (文本总长度大于800).

4 小结

  • BERT模型的3个优点:

    • 在11个NLP任务上取得SOAT成绩.
    • 利用了Transformer的并行化能力以及长语句捕捉语义依赖和结构依赖.
    • BERT实现了双向Transformer并为后续的微调任务留出足够的空间.
  • BERT模型的4个缺点:

    • BERT模型太大, 太慢.
    • BERT模型中的中文模型是以字为基本token单位的, 无法利用词向量, 无法识别生僻词.
    • BERT模型中的MLM任务, [MASK]标记在训练阶段出现, 预测阶段不出现, 这种偏差会对模型有一定影响.
    • BERT模型的MLM任务, 每个batch只有15%的token参与了训练, 造成大量文本数据的"无用", 收敛速度慢, 需要的算力和算时都大大提高.
  • 长文本处理如果要利用BERT的话, 需要进行截断处理.

    • 第一种方式就是只保留前面510个token.
    • 第二种方式就是只保留后面510个token.
    • 第三种方式就是前后分别保留一部分token, 总数是510.
  • BERT中MLM任务中的[MASK]是以一种显示的方式告诉模型"这个词我不告诉你, 你自己从上下文里猜", 非常类似于同学们在做完形填空. 如果[MASK]意外的部分全部都用原始token, 模型会学习到"如果当前词是[MASK], 就根据其他词的信息推断这个词; 如果当前词是一个正常的单词, 就直接照抄". 这样一来, 到了fine-tunning阶段, 所有单词都是正常单词了, 模型就会照抄所有单词, 不再提取单词之间的依赖关系了.

  • BERT中MLM任务以10%的概率填入random token, 就是让模型时刻处于"紧张情绪"中, 让模型搞不清楚当前看到的token是真实的单词还是被随机替换掉的单词, 这样模型在任意的token位置就只能把当前token的信息和上下文信息结合起来做综合的判断和建模. 这样一来, 到了fine-tunning阶段, 模型也会同时提取这两方面的信息, 因为模型"心理很紧张", 它不知道当前看到的这个token, 所谓的"正常单词"到底有没有"提前被动过手脚".

相关文章:

自然语言处理---Transformer机制详解之BERT模型特点

1 BERT的优点和缺点 1.1 BERT的优点 通过预训练, 加上Fine-tunning, 在11项NLP任务上取得最优结果.BERT的根基源于Transformer, 相比传统RNN更加高效, 可以并行化处理同时能捕捉长距离的语义和结构依赖.BERT采用了Transformer架构中的Encoder模块, 不仅仅获得了真正意义上的b…...

c语言基础:L1-048 矩阵A乘以B

给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘即若A有Ra​行、Ca​列,B有Rb​行、Cb​列,则只有Ca​与Rb​相等时,两个矩阵才能相乘。 输入格式: 输入先后给出…...

asp.net乒乓球场地管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net乒乓球场地管理系统是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使用c#语 言开发 asp.net 乒乓球场地管理系统 二…...

git仓库中增加子仓库

在 Git 中包含另一个 Git 仓库通常使用 Git 子模块(Git Submodule)来实现。子模块允许你在一个 Git 仓库中包含另一个 Git 仓库,从而在一个仓库中管理多个相关但独立的项目。 以下是如何将一个 Git 仓库包含为另一个 Git 仓库的子模块的步骤…...

html中公用css、js提取、使用

前言 开发中,页面会有引用相同的css、js的情况,如需更改则每个页面都需要调整,重复性工作较多,另外在更改内容之后上传至服务器中会有缓存问题,特针对该情况对公用css、js进行了提取并对引用时增加了版本号 一、提取…...

Jprofiler V14中文使用文档

JProfiler介绍 什么是JProfiler? JProfiler是一个用于分析运行JVM内部情况的专业工具。 在开发中你可以使用它,用于质量保证,也可以解决你的生产系统遇到的问题。 JProfiler处理四个主要问题: 方法调用 这通常被称为"CPU分析"。方法调用可以通过不同的方式进行测…...

基于PHP的蛋糕甜品商店管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding) 代码参考数据库参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者&am…...

DJYROS产品:基于DJYOS的国产自主割草机器人解决方案

基于都江堰泛计算操作系统的国产自主机器人操作系统即将发布…… 1、都江堰机器人操作系统命名:DJYROS 2、机器人算法:联合行业自主机器人厂家,构建机器人算法库。 3、机器人芯片:联合行业机器人AI芯片公司,构建专用…...

A预测蛋白质结构

基于AlphaFold2进行蛋白质结构预测的文章解析 RoseTTAFold: Tunyasuvunakool, K., Adler, J., Wu, Z. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021) AlphaFold2: Accurate prediction of protein structures a…...

rust学习~slice迭代器

背景 pub fn iter(&self) -> Iter<_, T>查看Iter 结构体 pub struct Iter<a, T> whereT: a, {/* private fields */ }对迭代器求和 sum fn sum<S>(self) -> S whereSelf: Sized, // 该函数只能在具有已知大小的类型上调用S: Sum<Self::Item…...

python免杀初探

文章目录 loader基础知识loader参数介绍 evilhiding项目地址免杀方式修改加载器花指令混淆loader源码修改签名加壳远程条件触发修改ico的md5加密 loader基础知识 loader import ctypes #&#xff08;kali生成payload存放位置&#xff09; shellcode bytearray(b"shellc…...

OpenCV实现物体尺寸的测量

一 &#xff0c;项目分析 物体尺寸测量的思路是找一个确定尺寸的物体作为参照物&#xff0c;根据已知的计算未知物体尺寸。 如下图所示&#xff0c;绿色的板子尺寸为220*300&#xff08;单位&#xff1a;毫米&#xff09;&#xff0c;通过程序计算白色纸片的长度。 主要是通过…...

投资研报的优质网站

投资研报&#xff1a;https://www.zhihu.com/question/357713923/answer/2304672553...

每日刷题|贪心算法初识

食用指南&#xff1a;本文为作者刷题中认为有必要记录的题目 推荐专栏&#xff1a;每日刷题 ♈️今日夜电波&#xff1a;悬溺—葛东琪 0:34 ━━━━━━️&#x1f49f;──────── 3:17 &#x1f…...

[python]如何操作Outlook实现邮件自动化

【背景】 邮件自动化存在很多需求场景,有的场景希望会出现Outlook窗口在发送前进行一下人工检查等等的人为干预,有的则希望定时直接发送,有的需要加附件等等。本篇讨论用Python覆盖这些Outlook邮件自动化场景的方法。 【解决方法】 首先Outlook和SMTP的邮件自动化方法所使…...

2008-2021年上市公司实体企业金融化程度测算数据(原始数据+stata代码)

2008-2021年上市公司实体企业金融化程度测算&#xff08;原始数据stata代码&#xff09; 1、时间&#xff1a;2008-2021年 2、指标&#xff1a;股票代码、年份、交易性金融资产、衍生金融资产、发放贷款及垫款净额、可供出售金融资产净额、持有至到期投资净额、长期债权投资净…...

day02_numpy_demo

Numpy Numpy的优势ndarray属性基本操作 ndarray.func() numpy.func()ndarray的运算&#xff1a;逻辑运算、统计运算、数组间运算合并、分割、IO操作、数据处理,不过这个一般使用的是pandas Numpy的优势 Numpy numerical数值化 python 数值计算的python库&#xff0c;用于快…...

LeetCode 414. Third Maximum Number【数组】简单

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

FPGA时序分析与约束(6)——综合的基础知识

在使用时序约束的设计过程中&#xff0c;综合&#xff08;synthesis&#xff09;是第一步。 一、综合的解释 在电子设计中&#xff0c;综合是指完成特定功能的门级网表的实现。除了特定功能&#xff0c;综合的过程可能还要满足某种其他要求&#xff0c;如功率、操作频率等。 有…...

Python实现一个简单的http服务,Url传参输出html页面

摘要 要实现一个可以接收参数的HTTP服务器&#xff0c;您可以使用Python标准库中的http.server模块。该模块提供了一个简单的HTTP服务器&#xff0c;可以用于开发和测试Web应用程序。 下面是一个示例代码&#xff0c;它实现了一个可以接收参数的HTTP服务器&#xff1a; 代码…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

土建施工员考试:建筑施工技术重点知识有哪些?

《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目&#xff0c;核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容&#xff0c;附学习方向和应试技巧&#xff1a; 一、施工组织与进度管理 核心目标&#xff1a; 规…...