【BP-Adaboost预测】基于BP神经网络的Adaboost的单维时间序列预测研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码及数据
💥1 概述
Adaboost (Adaptive Boosting) 是一种集成学习算法,它可以将多个弱分类器组合成一个强分类器。BP神经网络是一种常用的机器学习算法,可以用于解决分类和回归问题。在单维时间序列预测中,可以将Adaboost和BP神经网络结合起来,以提高预测准确性。
首先,需要将单维时间序列数据进行预处理,例如去除噪声、平滑数据等。然后,将数据集划分为训练集和测试集。
接下来,使用BP神经网络作为基分类器,训练多个不同的神经网络模型。每个模型都是在训练集上进行训练,并根据预测结果的准确性进行加权。
在每一轮迭代中,Adaboost会根据上一轮的分类错误率调整样本的权重,使分类错误的样本在下一轮中得到更多的关注。这样,Adaboost会逐步提高整体分类准确性。
最后,将多个训练好的BP神经网络模型进行组合,得到一个强分类器。在测试阶段,使用该强分类器对测试集进行预测,并评估预测结果的准确性。
需要注意的是,Adaboost和BP神经网络都需要进行参数调优,以获得最佳的预测性能。此外,还可以考虑使用其他的特征工程方法,如滑动窗口、差分等,以提取更多的有用信息。
基于BP神经网络的Adaboost的单维时间序列预测研究可以通过将BP神经网络作为基分类器,并利用Adaboost的加权策略来提高预测准确性。该方法需要对数据进行预处理、参数调优和特征工程,以获得最佳的预测结果。
📚2 运行结果





🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]彭高辉1,张 祥1,郭春梅2.基于BP-Adaboost模型的年降水量预测研究[J].华北水利水电大学学报(自然科学版), 2014.
[2]柳玉,郭虎全.基于AdaBoost与BP神经网络的风速预测研究[J].电网与清洁能源, 2012, 28(2):5.DOI:10.3969/j.issn.1674-3814.2012.02.016.
🌈4 Matlab代码及数据
相关文章:
【BP-Adaboost预测】基于BP神经网络的Adaboost的单维时间序列预测研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Origami Studio for Mac:塑造未来,掌握原型设计之巅
在当今高度竞争的设计领域,原型设计的重要性不言而喻。它不仅是沟通想法,也是测试和改进设计的关键环节。而现在,一款强大的原型设计工具——Origami Studio for Mac,正在席卷设计界,以其独特的功能和卓越的性能&#…...
UML类图中各箭头表示总结
UML类图中各箭头表示总结 1、泛化2、实现3、依赖4、关联5、聚合6、组合 在UML类图中,箭头关系是用来表示类之间的关系的。箭头关系的种类有以下几种: 1、泛化 泛化:表示类之间的继承关系。箭头从子类指向父类。箭头:实线空心三角…...
神经网络量化----为了部署而特别设计
引言:一般神经网络量化有两个目的: 为了加速,在某些平台上浮点数计算比较耗费时间,替换为整形可以加快运算为了部署,某些平台上只支持整形运算,比如在芯片中如果是第1个目的,则使用常规的量化手段就可以满足,将浮点数运算变成整形运算+较少的浮点运算 但是如果是第2个目…...
代码随想录算法训练营Day60|单调栈01
代码随想录算法训练营Day60|单调栈01 文章目录 代码随想录算法训练营Day60|单调栈01一、739. 每日温度二、496.下一个更大元素 I 一、739. 每日温度 class Solution {public int[] dailyTemperatures(int[] temperatures) {//单调栈int lenstemperatures.length;int result[]n…...
openMP学习笔记 -编程模型
OpenMP模型 gcc编译openmp指令:gcc test.cpp -o test -fopenmp 定积分计算 函数面积 给定一个定积分,计算其面积: ∫ 0 1 4.0 ( 1 x 2 ) d x \int^{1}_{0}{\frac{4.0}{(1x^2)}dx} ∫01(1x2)4.0dx omp 概念 并行区域 并行区域用于…...
【Hive SQL 每日一题】环比增长率、环比增长率、复合增长率
文章目录 环比增长率同比增长率复合增长率测试数据需求说明需求实现 环比增长率 环比增长率是指两个相邻时段之间某种指标的增长率。通常来说,环比增长率是比较两个连续时间段内某项数据的增长量大小的百分比。 环比增长率反映了两个相邻时间段内某种经济指标的变…...
Java设计模式之外观模式(Facade Pattern)
外观模式(Facade Pattern)是一种结构型设计模式,它提供了一个统一的接口,用于访问子系统中的一组接口。外观模式通过隐藏子系统的复杂性,简化了客户端与子系统之间的交互,提供了一个更简单、更直观的接口。…...
【大疆智图】大疆智图(DJI Terra 3.0.0)安装及使用教程
大疆智图是一款以二维正射影像与三维模型重建为主的软件,同时提供二维多光谱重建、激光雷达点云处理、精细化巡检等功能。它能够将无人机采集的数据可视化,实时生成高精度、高质量三维模型,满足事故现场、工程监测、电力巡线等场景的展示与精确测量需求。 文章目录 1. 安装D…...
腾讯地图基本使用(撒点位,点位点击,弹框等...功能) 搭配Vue3
腾讯地图的基础注册账号 展示地图等基础功能在专栏的上一篇内容 大家有兴趣可以去看一看 今天说的是腾讯地图的在稍微一点的基础操作 话不多说 直接上代码 var marker ref(null) var map var center ref(null) // 地图初始化 const initMap () > {//定义地图中心点坐标…...
散列表:Word文档中的单词拼写检查功能是如何实现的?
文章来源于极客时间前google工程师−王争专栏。 一旦我们在Word里输入一个错误的英文单词,它就会用标红的方式提示“编写错误”。Word的这个单词拼写检查功能,虽然很小但却非常实用。这个功能是如何实现的? 散列别(Hash Table&am…...
智慧公厕蜕变多功能城市智慧驿站公厕的创新
随着城市发展的不断推进,对公共设施的便利性和智能化要求也日益提高。为满足市民对高品质、便捷、舒适的公共厕所的需求,智慧公厕行业的领航厂家广州中期科技有限公司,全新推出了一体化智慧公厕驿站。凭借着“高科技碳中和物联网创意设计新经…...
R语言清洗与处理数据常用代码段
去掉数据框df的某一列: # 删除不必要的变量 data$unnecessary_var <- NULL 选择需要的列进行读入数据框: # 选择需要的列 selected_cols <- c("col1", "col2", "col3") data <- fread("data.csv", s…...
centos 7.9 安装python 3.10的tls问题,
本地开发升级成了py3.10.6,服务器测试时安装py3.10.4 发现无法正常使用pip3 pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available. 印象中py3的高版本依赖高版本的openssl,centos 7下默认的openssl为1.0.x, 问题很简…...
pytorch,tf维度理解RNN
input_t input_t.squeeze(1) 这行代码用于从 input_t 中去除尺寸为1的维度。在深度学习中,经常会出现具有额外尺寸为1的维度,这些维度通常是为了匹配模型的期望输入维度而添加的。 在这里,input_t可能具有形状 (batch_size, 1, feature_dim…...
算法刷题-数组
算法刷题 209. 长度最小的子数组-二分或者滑动窗口 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度**。**如果不存在符合条件的子数…...
可视化数学分析软件 MATLAB R2021b mac中文版软件介绍
MATLAB R2021b mac作为数学类科技应用软件中首屈一指的商业数学软件,可以帮助您进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。…...
罗技摄像头左右翻转
需要下载驱动lws(我的是c310) LWS 罗技摄像头驱动下载 打开驱动程序,高级设置。有个镜像。...
【Linux】操作系统的认识
操作系统 1. 冯诺依曼体系结构2. 操作系统 1. 冯诺依曼体系结构 冯诺依曼体系结构的介绍 冯.诺依曼结构消除了原始计算机体系中,只能依靠硬件控制程序的状况(程序作为控制器的一部分,作为硬件存在),将程序编码存储在…...
【论文阅读】(2023TPAMI)PCRLv2
目录 AbstractMethodMethodnsU-Net中的特征金字塔多尺度像素恢复多尺度特征比较从多剪切到下剪切训练目标 总结 Abstract 现有方法及其缺点:最近的SSL方法大多是对比学习方法,它的目标是通过比较不同图像视图来保留潜在表示中的不变合判别语义ÿ…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...
高效的后台管理系统——可进行二次开发
随着互联网技术的迅猛发展,企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心,成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统,它不仅支持跨平台应用,还能提供丰富…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...

