当前位置: 首页 > news >正文

数字图像处理实验记录五(图像的空间域增强-锐化处理)

前言:

文章目录

  • 一、基础知识
    • 1,什么是锐化?
    • 2,为什么要锐化?
    • 3,怎么进行锐化?
  • 二、实验要求
    • 任务1:
    • 任务2:
    • 任务3:
  • 三、实验记录:
    • 任务1:
    • 任务2:
    • 任务3:
  • 四、结果展示
    • 任务1:
    • 任务2:
    • 任务3:
  • 五、反思总结与收获
      • 1,取绝对值:
      • 2,取0:
      • 总结:

一、基础知识

1,什么是锐化?

百度到:图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。
在我看来,锐化就是将图像的边缘进行增强。

2,为什么要锐化?

既然锐化是将图像边缘增强,那么我认为往往是图像边缘模糊的时候需要进行锐化。在上一个实验中我们学到了平滑处理滤波器,不难发现滤波器往往会在清除噪声的时候让我们的图像变得模糊,所以我认为在我们处理完噪声以后就可以通过锐化来增强边缘。如下:
在这里插入图片描述
虽然锐化后不是很清晰,但至少边缘明显了很多

3,怎么进行锐化?

锐化是增强边缘,那么首先我们就要找到边缘,接下来关键的部分就是怎么找边缘了。
什么是边缘?在图像的一个区域内,出现了灰度的突变,突然变小或突然变大,这里突变的中间区域就是边缘。
在这里插入图片描述
怎么找边缘?
在计算机里是一个像素一个像素进行处理,怎么处理?这里就提到了几种算子(在我看来就是一种计算的模板方法):
在这里插入图片描述
以4领域的Laplacian算子为例:对于一个像素f(i,j),我们就使用它的上下左右四个像素和它自身进行运算得到g(i,j):
在这里插入图片描述
如果4领域的像素值都和中心差不多,那么g(i,j)最后的值就是0,显示是黑色,g(i,j)越大,就越白,最后处理完得到的g,就是边缘图像。
在这里插入图片描述
边缘检测函数sharpen_value():

function [Ig] = sharpen_value(S,kind)
% 锐化函数 输入S,锐化算子 kind
if(~exist('kind','var'))kind = -1;  % 如果未出现该变量,则对其进行赋值
end
[m,n] = size(S);if(kind == -1)%拉普拉斯4H = [0,-1,0;-1,4,-1;0,-1,0];
elseif(kind == 0)%拉普拉斯8H = [-1,-1,-1;-1,8,-1;-1,-1,-1];
elseif(kind == 1)%prewitt 横H = [1,1,1;0,0,0;-1,-1,-1];
elseif(kind == 2)%prewitt 竖H = [1,0,-1;1,0,-1;1,0,-1];
elseif(kind == 3)%Sobel 竖H= [1,2,1;0,0,0;-1,-2,-1];
elseif(kind == 4)%Sobel 竖H= [1,0,-1;2,0,-2;1,0,-1];
elseif(kind == 5)H= [1,0,0;0,-1,0;0,0,0];end
a=1;
S = im2double(S);
Ig =S;for i=2:m-1for j=2:n-1if(kind == 5)Ig(i,j) = abs(S(i,j)-S(i+1,j+1))+abs(S(i+1,j)-S(i,j+1));elseIg(i,j) = 0;for a = -1:1for b = -1:1Ig(i,j) = Ig(i,j)+H(a+2,b+2)*S(i+a,j+b);     endendif(Ig(i,j)<0)Ig(i,j) = 0;endendIg(i,j) = uint8(Ig(i,j)*255);end
end
Ig = uint8(Ig);end

最后将边缘图和原图相加,就可以实现边缘增强了。

二、实验要求

任务1:

利用Laplacian 锐化算子(α=-1)对256 级灰度的数字图像进行锐化处理,显示处理前、后图像。

任务2:

在添加了噪声的图像上进行拉普拉斯锐化处理,和未添加噪声图像的处理结果进行比较。

任务3:

分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对数字图像进行边缘检测,计算图像梯度图。显示图像x和y方向偏导图像和梯度幅值图像。

三、实验记录:

任务1:

利用Laplacian 锐化算子(α=-1)对256 级灰度的数字图像进行锐化处理,显示处理前、后图像。

figure('NumberTitle','off','Name','任务1');
I = imread('stone.jpg');
I2 = sharpen_value(I,-1);
I2 = I2+I;
subplot(1,2,1);imshow(I);title('原图');
subplot(1,2,2);imshow(I2);title('增强后');

任务2:

在添加了噪声的图像上进行拉普拉斯锐化处理,和未添加噪声图像的处理结果进行比较。

figure('NumberTitle','off','Name','任务2');
Ib = imnoise(I,'salt',0.02);%添加椒盐噪声
I3 = sharpen_value(Ib,-1);
I3 = I3+Ib;
subplot(1,2,1);imshow(I2);title('原图增强图');
subplot(1,2,2);imshow(I3);title('噪声增强图');

任务3:

分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对数字图像进行边缘检测,计算图像梯度图。显示图像x和y方向偏导图像和梯度幅值图像。

figure('NumberTitle','off','Name','任务3');
I = rgb2gray(I);
H1 = sharpen_value(I,5);
H2 = sharpen_value(I,2);
H3 = sharpen_value(I,3);
subplot(2,2,1.5);imshow(H1);title('Roberts图像梯度图');
subplot(2,2,3);imshow(H2);title('Prewitt x方向偏导');
subplot(2,2,4);imshow(H3);title('Sobel y方向偏导');

四、结果展示

任务1:

利用Laplacian 锐化算子(α=-1)对256 级灰度的数字图像进行锐化处理,显示处理前、后图像。
在这里插入图片描述

任务2:

在添加了噪声的图像上进行拉普拉斯锐化处理,和未添加噪声图像的处理结果进行比较。
可以明显看出噪声对锐化的影响很大。
椒盐噪声:
在这里插入图片描述
高斯噪声:
在这里插入图片描述

任务3:

分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对数字图像进行边缘检测,计算图像梯度图。显示图像x和y方向偏导图像和梯度幅值图像。
在这里插入图片描述

五、反思总结与收获

对Laplacian锐化算子的处理结果中,对小于0的部分,采用不同的方法标准化到[0,255]时,图像的显示效果有什么不同?为什么?
在我看来有两种方法来标准化:1,取绝对值。2,取0。
改了改函数,让我们看看效果:

1,取绝对值:

在这里插入图片描述
边缘:
在这里插入图片描述

2,取0:

在这里插入图片描述
边缘:
在这里插入图片描述

总结:

取绝对值:负值转正值,会增加对比度,但可能导致某些细节过度增强,看起来更加锐利。会引入图像中的一些噪声或产生不自然的效果。
取0:负值保持为零,因此对比度不会显著增加。这种方法可以保留一些图像细节,但可能不会产生像绝对值标准化那样强烈的锐化效果。

相关文章:

数字图像处理实验记录五(图像的空间域增强-锐化处理)

前言&#xff1a; 文章目录 一、基础知识1&#xff0c;什么是锐化&#xff1f;2&#xff0c;为什么要锐化&#xff1f;3&#xff0c;怎么进行锐化&#xff1f; 二、实验要求任务1&#xff1a;任务2&#xff1a;任务3&#xff1a; 三、实验记录&#xff1a;任务1&#xff1a;任…...

基于水基湍流优化的BP神经网络(分类应用) - 附代码

基于水基湍流优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于水基湍流优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.水基湍流优化BP神经网络3.1 BP神经网络参数设置3.2 水基湍流算法应用 4.测试结果…...

0010【Edabit ★☆☆☆☆☆】Maximum Edge of a Triangle

【Edabit 算法 ★☆☆☆☆☆】Maximum Edge of a Triangle algorithms math numbers Instructions Create a function that finds the maximum range of a triangle’s third edge, where the side lengths are all integers. Examples nextEdge(8, 10) // 17 nextEdge(5, 7…...

Godot 官方2D C#重构(3):TileMap使用

文章目录 前言Godot Tilemap使用Tilemap使用TileSet和TilemapTilemap 图片资源添加TileSet&#xff0c;开始切图导入图片切图 简单添加TileMap如何使用 Auto Tilemap使用Auto Tilemap 前言 Godot 官方 教程 Godot 2d 官方案例C#重构 专栏 Godot 2d 重构 github地址 Godot Tilem…...

6.DApp-用Web3实现前端与智能合约的交互

题记 用Web3实现前端与智能合约的交互&#xff0c;以下是操作流程和代码。 准备ganache环境 文章地址&#xff1a;4.DApp-MetaMask怎么连接本地Ganache-CSDN博客 准备智能合约 文章地址&#xff1a; 2.DApp-编写和运行solidity智能合约-CSDN博客 编写index.html文件 <!…...

数据异常值检测

数据异常值检测 参考&#xff1a; 数据异常值的检测方法-基于Python 独家 | 每个数据科学家应该知道的五种检测异常值的方法&#xff08;附Python代码&#xff09; 异常检测主要方法总结 14种数据异常值检验的方法&#xff01; 14种数据异常值检验的方法 浅谈数据挖掘中的…...

监听redis键失效事件实现延迟功能

用Redis实现延迟队列&#xff0c;我研究了两种方案&#xff0c;发现并不简单 SpringBoot实现Redis失效监听事件—KeyExpirationEventMessageListener Redis 监听过期的key&#xff08;KeyExpirationEventMessageListener&#xff09; 项目背景 需求上说&#xff0c;需要延迟…...

使用UniApp实现视频数组自动下载与播放功能:一步步指导

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

C语言笔试面试必刷题

&#x1f38a;【面经】专题正在持续更新中&#xff0c;内含C语言&#xff0c;数据结构&#xff0c;Linux&#xff0c;网络编程等✨&#xff0c;欢迎大家前往订阅本专题&#xff0c;获取更多详细信息哦&#x1f38f;&#x1f38f;&#x1f38f; &#x1fa94;本系列专栏 - ​​…...

window11安装Python环境

python环境安装 访问Python官网:https://www.python.org/ 点击downloads按钮&#xff0c;在下拉框中选择系统类型(windows/Mac OS/Linux等) 选择下载最新版本的Python cmd命令如果出现版本号以及>>>则表示安装成功 如果出现命令行中输入python出现如下错误 可能…...

SpringBoot中的日志使用

SpringBoot的默认使用 观察SpringBoot的Maven依赖图 可以看出来&#xff0c;SpringBoot默认使用的日志系统是使用Slf4j作为门户&#xff0c;logback作为日志实现 编写一个测试代码看是否是这样 SpringBootTest class SpringbootLogDemoApplicationTests {//使用Slf4j来创建LOG…...

微信小程序中监听横屏竖屏

直接上代码 第一步&#xff1a;在你想要监听页面的json文件中添加此节点 "pageOrientation": "auto" 第二步&#xff1a;wx.onWindowResize() page&#xff08;{ onLoad() {this.kstd()},kstd(){ // 监听屏幕旋转事件 wx.onWindowResize((res)>{// …...

云原生概述

1. 何谓云原生 云原生是一种构建和运行应用程序的方法&#xff0c;是一套技术体系和方法论。云原生&#xff08;CloudNative&#xff09;是一个组合词&#xff0c;CloudNative。Cloud表示应用程序位于云中&#xff0c;而不是传统的数据中心&#xff1b;Native表示应用程序从设…...

消失的它:网络层分片包中的第一个分片包去哪了?

在网络层IP包分片的过程中&#xff0c;遇到了大麻烦&#xff01; 主机A&#xff1a; IP地址&#xff1a;192.168.0.10/24 MAC地址&#xff1a;02:00:00:00:00:10 主机B&#xff1a; IP地址&#xff1a;192.168.0.20/24 MAC地址&#xff1a;02:00:00:00:00:20 MTU&#xff1a;1…...

LeetCode刷题---有效的括号

这里用到了栈的思想 栈(stack)是限定仅在表尾进行插入或者删除的线性表。对于栈来说&#xff0c;表尾端称为栈顶&#xff08;top&#xff09;&#xff0c;表头端称为栈低&#xff08;bottom&#xff09;。不含元素的空表称为空栈。因为栈限定在表尾进行插入或者删除&#xff0c…...

QT学习笔记-QT访问各种关系数据库笔记汇总

QT学习笔记-QT访问各种关系数据库笔记汇总 1、QT访问Oracle数据库2、QT访问SQLServer数据库3、QT访问MySQL数据库4、QT访问PostgreSQL数据库5、QT访问Access数据库6、QT多线程中访问数据库的要点 在使用QT进行应用开发过程中&#xff0c;不可避免的会涉及到访问关系数据库&…...

Shell脚本-常用命令

Shell 脚本 Shell 脚本&#xff08;shell script&#xff09;&#xff0c;是一种为 shell 编写的脚本程序。 业界所说的 shell 通常都是指 shell 脚本&#xff0c;但读者朋友要知道&#xff0c;shell 和 shell script 是两个不同的概念。 由于习惯的原因&#xff0c;简洁起见&a…...

Flink之输出算子Redis Sink

Redis Sink Redis Sinkjedis实现添加依赖自定义Redis Sink使用Sink验证 开源 Redis Connector添加依赖自定义Redis SinkRedisCommandString数据类型示例Hash数据类型示例 使用SinkRedisStringSinkRedisHashSink 验证 Redis Sink 在新版Flink的文档中&#xff0c;并没有发现Redi…...

【数据结构】顺序表实现通讯录

前言 在上一节中我们实现了顺序表&#xff0c;现在我们将使用顺序表完成通讯录的实现。&#xff08;注&#xff1a;本人水平有限&#xff0c;“小屎山”有些许bug&#xff0c;代码冗余且语无伦次&#xff0c;望谅解&#xff01;&#x1f605;&#xff09; 文章目录 一、数据结构…...

JMeter 随机数生成器简介:使用 Random 和 UUID 算法

在压力测试中&#xff0c;经常需要生成随机值来模拟用户行为。JMeter 提供了多种方式来生成随机值&#xff0c;本文来具体介绍一下。 随机数函数 JMeter 提供了多个用于生成随机数的函数&#xff0c;其中最常用的是 __Random 函数。该函数可以生成一个指定范围内的随机整数或…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...

基于小程序老人监护管理系统源码数据库文档

摘 要 近年来&#xff0c;随着我国人口老龄化问题日益严重&#xff0c;独居和居住养老机构的的老年人数量越来越多。而随着老年人数量的逐步增长&#xff0c;随之而来的是日益突出的老年人问题&#xff0c;尤其是老年人的健康问题&#xff0c;尤其是老年人产生健康问题后&…...

【大厂机试题解法笔记】矩阵匹配

题目 从一个 N * M&#xff08;N ≤ M&#xff09;的矩阵中选出 N 个数&#xff0c;任意两个数字不能在同一行或同一列&#xff0c;求选出来的 N 个数中第 K 大的数字的最小值是多少。 输入描述 输入矩阵要求&#xff1a;1 ≤ K ≤ N ≤ M ≤ 150 输入格式 N M K N*M矩阵 输…...

Qt/C++学习系列之列表使用记录

Qt/C学习系列之列表使用记录 前言列表的初始化界面初始化设置名称获取简单设置 单元格存储总结 前言 列表的使用主要基于QTableWidget控件&#xff0c;同步使用QTableWidgetItem进行单元格的设置&#xff0c;最后可以使用QAxObject进行单元格的数据读出将数据进行存储。接下来…...

基于django+vue的健身房管理系统-vue

开发语言&#xff1a;Python框架&#xff1a;djangoPython版本&#xff1a;python3.8数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat12开发软件&#xff1a;PyCharm 系统展示 会员信息管理 员工信息管理 会员卡类型管理 健身项目管理 会员卡管理 摘要 健身房管理…...