数字图像处理实验记录五(图像的空间域增强-锐化处理)
前言:
文章目录
- 一、基础知识
- 1,什么是锐化?
- 2,为什么要锐化?
- 3,怎么进行锐化?
- 二、实验要求
- 任务1:
- 任务2:
- 任务3:
- 三、实验记录:
- 任务1:
- 任务2:
- 任务3:
- 四、结果展示
- 任务1:
- 任务2:
- 任务3:
- 五、反思总结与收获
- 1,取绝对值:
- 2,取0:
- 总结:
一、基础知识
1,什么是锐化?
百度到:图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。
在我看来,锐化就是将图像的边缘进行增强。
2,为什么要锐化?
既然锐化是将图像边缘增强,那么我认为往往是图像边缘模糊的时候需要进行锐化。在上一个实验中我们学到了平滑处理滤波器,不难发现滤波器往往会在清除噪声的时候让我们的图像变得模糊,所以我认为在我们处理完噪声以后就可以通过锐化来增强边缘。如下:

虽然锐化后不是很清晰,但至少边缘明显了很多
3,怎么进行锐化?
锐化是增强边缘,那么首先我们就要找到边缘,接下来关键的部分就是怎么找边缘了。
什么是边缘?在图像的一个区域内,出现了灰度的突变,突然变小或突然变大,这里突变的中间区域就是边缘。

怎么找边缘?
在计算机里是一个像素一个像素进行处理,怎么处理?这里就提到了几种算子(在我看来就是一种计算的模板方法):

以4领域的Laplacian算子为例:对于一个像素f(i,j),我们就使用它的上下左右四个像素和它自身进行运算得到g(i,j):

如果4领域的像素值都和中心差不多,那么g(i,j)最后的值就是0,显示是黑色,g(i,j)越大,就越白,最后处理完得到的g,就是边缘图像。

边缘检测函数sharpen_value():
function [Ig] = sharpen_value(S,kind)
% 锐化函数 输入S,锐化算子 kind
if(~exist('kind','var'))kind = -1; % 如果未出现该变量,则对其进行赋值
end
[m,n] = size(S);if(kind == -1)%拉普拉斯4H = [0,-1,0;-1,4,-1;0,-1,0];
elseif(kind == 0)%拉普拉斯8H = [-1,-1,-1;-1,8,-1;-1,-1,-1];
elseif(kind == 1)%prewitt 横H = [1,1,1;0,0,0;-1,-1,-1];
elseif(kind == 2)%prewitt 竖H = [1,0,-1;1,0,-1;1,0,-1];
elseif(kind == 3)%Sobel 竖H= [1,2,1;0,0,0;-1,-2,-1];
elseif(kind == 4)%Sobel 竖H= [1,0,-1;2,0,-2;1,0,-1];
elseif(kind == 5)H= [1,0,0;0,-1,0;0,0,0];end
a=1;
S = im2double(S);
Ig =S;for i=2:m-1for j=2:n-1if(kind == 5)Ig(i,j) = abs(S(i,j)-S(i+1,j+1))+abs(S(i+1,j)-S(i,j+1));elseIg(i,j) = 0;for a = -1:1for b = -1:1Ig(i,j) = Ig(i,j)+H(a+2,b+2)*S(i+a,j+b); endendif(Ig(i,j)<0)Ig(i,j) = 0;endendIg(i,j) = uint8(Ig(i,j)*255);end
end
Ig = uint8(Ig);end
最后将边缘图和原图相加,就可以实现边缘增强了。
二、实验要求
任务1:
利用Laplacian 锐化算子(α=-1)对256 级灰度的数字图像进行锐化处理,显示处理前、后图像。
任务2:
在添加了噪声的图像上进行拉普拉斯锐化处理,和未添加噪声图像的处理结果进行比较。
任务3:
分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对数字图像进行边缘检测,计算图像梯度图。显示图像x和y方向偏导图像和梯度幅值图像。
三、实验记录:
任务1:
利用Laplacian 锐化算子(α=-1)对256 级灰度的数字图像进行锐化处理,显示处理前、后图像。
figure('NumberTitle','off','Name','任务1');
I = imread('stone.jpg');
I2 = sharpen_value(I,-1);
I2 = I2+I;
subplot(1,2,1);imshow(I);title('原图');
subplot(1,2,2);imshow(I2);title('增强后');
任务2:
在添加了噪声的图像上进行拉普拉斯锐化处理,和未添加噪声图像的处理结果进行比较。
figure('NumberTitle','off','Name','任务2');
Ib = imnoise(I,'salt',0.02);%添加椒盐噪声
I3 = sharpen_value(Ib,-1);
I3 = I3+Ib;
subplot(1,2,1);imshow(I2);title('原图增强图');
subplot(1,2,2);imshow(I3);title('噪声增强图');
任务3:
分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对数字图像进行边缘检测,计算图像梯度图。显示图像x和y方向偏导图像和梯度幅值图像。
figure('NumberTitle','off','Name','任务3');
I = rgb2gray(I);
H1 = sharpen_value(I,5);
H2 = sharpen_value(I,2);
H3 = sharpen_value(I,3);
subplot(2,2,1.5);imshow(H1);title('Roberts图像梯度图');
subplot(2,2,3);imshow(H2);title('Prewitt x方向偏导');
subplot(2,2,4);imshow(H3);title('Sobel y方向偏导');
四、结果展示
任务1:
利用Laplacian 锐化算子(α=-1)对256 级灰度的数字图像进行锐化处理,显示处理前、后图像。

任务2:
在添加了噪声的图像上进行拉普拉斯锐化处理,和未添加噪声图像的处理结果进行比较。
可以明显看出噪声对锐化的影响很大。
椒盐噪声:

高斯噪声:

任务3:
分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对数字图像进行边缘检测,计算图像梯度图。显示图像x和y方向偏导图像和梯度幅值图像。

五、反思总结与收获
对Laplacian锐化算子的处理结果中,对小于0的部分,采用不同的方法标准化到[0,255]时,图像的显示效果有什么不同?为什么?
在我看来有两种方法来标准化:1,取绝对值。2,取0。
改了改函数,让我们看看效果:
1,取绝对值:

边缘:

2,取0:

边缘:

总结:
取绝对值:负值转正值,会增加对比度,但可能导致某些细节过度增强,看起来更加锐利。会引入图像中的一些噪声或产生不自然的效果。
取0:负值保持为零,因此对比度不会显著增加。这种方法可以保留一些图像细节,但可能不会产生像绝对值标准化那样强烈的锐化效果。
相关文章:
数字图像处理实验记录五(图像的空间域增强-锐化处理)
前言: 文章目录 一、基础知识1,什么是锐化?2,为什么要锐化?3,怎么进行锐化? 二、实验要求任务1:任务2:任务3: 三、实验记录:任务1:任…...
基于水基湍流优化的BP神经网络(分类应用) - 附代码
基于水基湍流优化的BP神经网络(分类应用) - 附代码 文章目录 基于水基湍流优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.水基湍流优化BP神经网络3.1 BP神经网络参数设置3.2 水基湍流算法应用 4.测试结果…...
0010【Edabit ★☆☆☆☆☆】Maximum Edge of a Triangle
【Edabit 算法 ★☆☆☆☆☆】Maximum Edge of a Triangle algorithms math numbers Instructions Create a function that finds the maximum range of a triangle’s third edge, where the side lengths are all integers. Examples nextEdge(8, 10) // 17 nextEdge(5, 7…...
Godot 官方2D C#重构(3):TileMap使用
文章目录 前言Godot Tilemap使用Tilemap使用TileSet和TilemapTilemap 图片资源添加TileSet,开始切图导入图片切图 简单添加TileMap如何使用 Auto Tilemap使用Auto Tilemap 前言 Godot 官方 教程 Godot 2d 官方案例C#重构 专栏 Godot 2d 重构 github地址 Godot Tilem…...
6.DApp-用Web3实现前端与智能合约的交互
题记 用Web3实现前端与智能合约的交互,以下是操作流程和代码。 准备ganache环境 文章地址:4.DApp-MetaMask怎么连接本地Ganache-CSDN博客 准备智能合约 文章地址: 2.DApp-编写和运行solidity智能合约-CSDN博客 编写index.html文件 <!…...
数据异常值检测
数据异常值检测 参考: 数据异常值的检测方法-基于Python 独家 | 每个数据科学家应该知道的五种检测异常值的方法(附Python代码) 异常检测主要方法总结 14种数据异常值检验的方法! 14种数据异常值检验的方法 浅谈数据挖掘中的…...
监听redis键失效事件实现延迟功能
用Redis实现延迟队列,我研究了两种方案,发现并不简单 SpringBoot实现Redis失效监听事件—KeyExpirationEventMessageListener Redis 监听过期的key(KeyExpirationEventMessageListener) 项目背景 需求上说,需要延迟…...
使用UniApp实现视频数组自动下载与播放功能:一步步指导
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
C语言笔试面试必刷题
🎊【面经】专题正在持续更新中,内含C语言,数据结构,Linux,网络编程等✨,欢迎大家前往订阅本专题,获取更多详细信息哦🎏🎏🎏 🪔本系列专栏 - …...
window11安装Python环境
python环境安装 访问Python官网:https://www.python.org/ 点击downloads按钮,在下拉框中选择系统类型(windows/Mac OS/Linux等) 选择下载最新版本的Python cmd命令如果出现版本号以及>>>则表示安装成功 如果出现命令行中输入python出现如下错误 可能…...
SpringBoot中的日志使用
SpringBoot的默认使用 观察SpringBoot的Maven依赖图 可以看出来,SpringBoot默认使用的日志系统是使用Slf4j作为门户,logback作为日志实现 编写一个测试代码看是否是这样 SpringBootTest class SpringbootLogDemoApplicationTests {//使用Slf4j来创建LOG…...
微信小程序中监听横屏竖屏
直接上代码 第一步:在你想要监听页面的json文件中添加此节点 "pageOrientation": "auto" 第二步:wx.onWindowResize() page({ onLoad() {this.kstd()},kstd(){ // 监听屏幕旋转事件 wx.onWindowResize((res)>{// …...
云原生概述
1. 何谓云原生 云原生是一种构建和运行应用程序的方法,是一套技术体系和方法论。云原生(CloudNative)是一个组合词,CloudNative。Cloud表示应用程序位于云中,而不是传统的数据中心;Native表示应用程序从设…...
消失的它:网络层分片包中的第一个分片包去哪了?
在网络层IP包分片的过程中,遇到了大麻烦! 主机A: IP地址:192.168.0.10/24 MAC地址:02:00:00:00:00:10 主机B: IP地址:192.168.0.20/24 MAC地址:02:00:00:00:00:20 MTU:1…...
LeetCode刷题---有效的括号
这里用到了栈的思想 栈(stack)是限定仅在表尾进行插入或者删除的线性表。对于栈来说,表尾端称为栈顶(top),表头端称为栈低(bottom)。不含元素的空表称为空栈。因为栈限定在表尾进行插入或者删除,…...
QT学习笔记-QT访问各种关系数据库笔记汇总
QT学习笔记-QT访问各种关系数据库笔记汇总 1、QT访问Oracle数据库2、QT访问SQLServer数据库3、QT访问MySQL数据库4、QT访问PostgreSQL数据库5、QT访问Access数据库6、QT多线程中访问数据库的要点 在使用QT进行应用开发过程中,不可避免的会涉及到访问关系数据库&…...
Shell脚本-常用命令
Shell 脚本 Shell 脚本(shell script),是一种为 shell 编写的脚本程序。 业界所说的 shell 通常都是指 shell 脚本,但读者朋友要知道,shell 和 shell script 是两个不同的概念。 由于习惯的原因,简洁起见&a…...
Flink之输出算子Redis Sink
Redis Sink Redis Sinkjedis实现添加依赖自定义Redis Sink使用Sink验证 开源 Redis Connector添加依赖自定义Redis SinkRedisCommandString数据类型示例Hash数据类型示例 使用SinkRedisStringSinkRedisHashSink 验证 Redis Sink 在新版Flink的文档中,并没有发现Redi…...
【数据结构】顺序表实现通讯录
前言 在上一节中我们实现了顺序表,现在我们将使用顺序表完成通讯录的实现。(注:本人水平有限,“小屎山”有些许bug,代码冗余且语无伦次,望谅解!😅) 文章目录 一、数据结构…...
JMeter 随机数生成器简介:使用 Random 和 UUID 算法
在压力测试中,经常需要生成随机值来模拟用户行为。JMeter 提供了多种方式来生成随机值,本文来具体介绍一下。 随机数函数 JMeter 提供了多个用于生成随机数的函数,其中最常用的是 __Random 函数。该函数可以生成一个指定范围内的随机整数或…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
【java面试】微服务篇
【java面试】微服务篇 一、总体框架二、Springcloud(一)Springcloud五大组件(二)服务注册和发现1、Eureka2、Nacos (三)负载均衡1、Ribbon负载均衡流程2、Ribbon负载均衡策略3、自定义负载均衡策略4、总结 …...
