当前位置: 首页 > news >正文

卷积神经网络CNN学习笔记-MaxPool2D函数解析

目录

  • 1.函数签名:
  • 2.学习中的疑问
  • 3.代码

1.函数签名:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
在这里插入图片描述

2.学习中的疑问

Q:使用MaxPool2D池化时,当卷积核移动到某位置,该卷积核覆盖区域超过了输入尺寸时,MaxPool2D会如何处理?
A:
当使用MaxPool2D池化层时,当卷积核移动到某个位置,如果该卷积核的覆盖区域超过了输入的尺寸,MaxPool2D会进行以下处理:

  1. 部分覆盖: 如果池化窗口(卷积核)的中心点位于输入的边界附近,以至于窗口的一部分超出了输入边界,MaxPool2D将仅考虑在输入内部的部分窗口。这意味着池化窗口的超出部分不会被考虑在内,不会对池化结果产生影响。

  2. Stride的作用: 池化层的stride参数决定了池化窗口在输入上移动的步幅。如果移动的步幅足够小,可以确保池化窗口在输入边界内的任何位置都能够被覆盖到。如果stride过大,可能导致某些位置被漏掉或者部分覆盖。

  3. 填充: 在某些情况下,可以使用池化层的填充参数,通常为"valid"或"same"。"valid"表示没有填充,"same"表示在输入的周围填充以确保输出的尺寸与输入的尺寸相同。填充可以帮助确保所有区域都被合理处理。

总之,MaxPool2D通常会在输入的边界附近部分覆盖或舍弃,而不会扩展到超出输入边界的区域。要确保在处理边界附近的特征时不会出现信息丢失,可以适当设置stride和填充参数,或者使用其他池化方法,如"same"填充或更复杂的边界处理策略。

3.代码

如下代码表明了MaxPool2D确实是只会考虑滤波器扫描到的输入数据里面的内容.

import torch
import torchvisionfrom torch.nn import Module,MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterinput = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]],dtype=torch.float32)print("前",input.shape)      # torch.Size([5, 5]),不满足输入的条件,需要进行格式转换input = torch.reshape(input,(-1,1,5,5))print("后",input.shape)    # 后 torch.Size([1, 1, 5, 5]) 一个bach_size,class ConNet(Module):def __init__(self):super(ConNet, self).__init__()# 池化层使用,设置卷积核为3*3,超出的部分保留数据self.maxpool = MaxPool2d(kernel_size=3,ceil_mode=True)def forward(self,input):output = self.maxpool(input)return output# 实例化对象
Work = ConNet()# 神经网络调用
output = Work(input)
print(output)

相关文章:

卷积神经网络CNN学习笔记-MaxPool2D函数解析

目录 1.函数签名:2.学习中的疑问3.代码 1.函数签名: torch.nn.MaxPool2d(kernel_size, strideNone, padding0, dilation1, return_indicesFalse, ceil_modeFalse) 2.学习中的疑问 Q:使用MaxPool2D池化时,当卷积核移动到某位置,该卷积核覆盖区域超过了输入尺寸时,MaxPool2D会…...

基于图像字典学习的去噪技术研究与实践

图像去噪是计算机视觉领域的一个重要研究方向,其目标是从受到噪声干扰的图像中恢复出干净的原始图像。字典学习是一种常用的图像去噪方法,它通过学习图像的稀疏表示字典,从而实现对图像的去噪处理。本文将详细介绍基于字典学习的图像去噪技术…...

记一次Clickhouse 复制表同步延迟排查

现象 数据从集群中一个节点写入之后,其他两个节点无法及时查询到数据,等了几分钟。因为我们ck集群是读写分离架构,也就是一个节点写数据,其他节点供读取。 排查思路 从业务得知,数据更新时间点为:11:30。…...

Maven的详细安装步骤说明

Step 1: 下载Maven 首先,您需要从Maven官方网站(https://maven.apache.org/)下载Maven的最新版本。在下载页面上,找到与您操作系统对应的二进制文件(通常是.zip或.tar.gz格式),下载到本地。 St…...

金融机器学习方法:K-均值算法

目录 1.算法介绍 2.算法原理 3.python实现示例 1.算法介绍 K均值聚类算法是机器学习和数据分析中常用的无监督学习方法之一,主要用于数据的分类。它的目标是将数据划分为几个独特的、互不重叠的子集或“集群”,以使得同一集群内的数据点彼此相似&…...

移远通信携手MIKROE推出搭载LC29H系列模组的Click boards开发板,为物联网应用带来高精定位服务

近日,移远通信与MikroElektronika(以下简称“MIKROE”)展开合作,基于移远LC29H系列模组推出了多款支持实时动态载波相位差分技术(RTK)和惯性导航(DR)技术的Click Boards™ 开发板&am…...

Spring Cloud 之 Sentinel简介与GATEWAY整合实现

简介 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式服务架构的流量控制组件,主要以流量为切入点,从限流、流量整形、熔断降级、系统负载保护、热点防护等多个维度来帮助开发者保障微服务的稳定性。 熔断 …...

搭建网站七牛云CDN加速配置

打开七牛云后台;添加域名; 添加需要加速的域名,比如我添加的是motoshare.cn 源站配置,这里要用IP地址,访问的目录下面要有能访问测试的文件,尽量不要用源站域名,这个只能用加速二级域名&#x…...

算法|每日一题|做菜顺序|贪心

1402. 做菜顺序 原题地址: 力扣每日一题:做菜顺序 一个厨师收集了他 n 道菜的满意程度 satisfaction ,这个厨师做出每道菜的时间都是 1 单位时间。 一道菜的 「 like-time 系数 」定义为烹饪这道菜结束的时间(包含之前每道菜所花…...

json-server工具准备后端接口服务环境

1.安装全局工具json-server(全局工具仅需要安装一次) 官网:json-server - npm 点击Getting started可以查看使用方法 在终端中输入yarn global add json-server或npm i json-server -g 如果输入json-server -v报错 再输入npm install -g j…...

文心一言 VS 讯飞星火 VS chatgpt (118)-- 算法导论10.3 3题

三、用go语言,在ALLOCATE-OBJECT和 FREE-OBJECT过程的实现中,为什么不需要设置或重置对象的 prev 属性呢? 文心一言: 在 Go 语言中,ALLOCATE-OBJECT 和 FREE-OBJECT 过程的实现通常不需要显式地设置或重置对象的 prev 属性。这…...

numpy矩阵画框框

在n>5(n是奇数)的nn数组中,用*画外方框和内接菱形。 (本笔记适合熟悉numpy的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学教程》,不仅仅是基础那…...

三十六、【进阶】show profiles分析

1、profiles (1)详情 可以帮助清楚的展现,每一条SQL语句的执行耗时,以及时间都耗费到哪里去了 (2)基础语句 2、查看是否支持profiles mysql> select have_profiling; ------------------ | have_prof…...

商品规格项数据的遍历以及添加

简介 今天在处理规格项的数据时遇到了一些问题,接下来就给大家分享一下 规格项数据设计 "specifications": [{"goodsSpecificationId": 6,"goodsSpecificationName": "网络类型","goodsTypeId": 24,"goods…...

华为eNSP配置专题-RIP路由协议的配置

文章目录 华为eNSP配置专题-RIP路由协议的配置0、概要介绍1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、终端构成和连接2.2、终端的基本配置 3、RIP路由的配置3.1、RIP路由的配置3.2、RIP路由的删除 华为eNSP配置专题-RIP路由协议的配置 0、概要介绍 路由信息…...

【软考】软件开发中不同对象之间的关系

1. 关联(Association): 关联表示两个或多个对象之间的关系。这种关系可以是双向的,也可以是单向的。关联关系通常用于描述两个对象之间的连接,但不涉及对象之间的所有权或整体-部分的关系。 例子: 考虑一…...

iMazing苹果用户手机备份工具 兼容最新的iOS16操作系统

现在距离苹果秋季新品发布会已过去月余,新iPhone 14系列和新版的iOS 16操作系统也如约与我们见面了,相信大家在9月初抢购的iPhone 14也基本到手了,但随之到来的数据资料备份迁移却是一件令人头大的事情,使用官方提供的iTunes软件卡…...

微信小程序获取数据的方法——iBeacon蓝牙

1.判断用户是否打开蓝牙: 由于iBeacon是基于蓝牙传输数据的,所以第一步要判断是否打开蓝牙,如果没有打开则提示用户去打开蓝牙,然后在下拉刷新时重新判断,确认用户打开之后再搜索iBeacon设备 wx.openBluetoothAdapte…...

一起学数据结构(11)——快速排序及其优化

上篇文章中,解释了插入排序、希尔排序、冒泡排序、堆排序及选择排序的原理及具体代码实现本片文章将针对快速排序,快速排序的几种优化方法、快速排序的非递归进行解释。 目录 1. 快速排序原理解析以及代码实现: 2. 如何保证相遇位置的值一…...

Docker开箱即用,开发码农加分项部署技术拿下!

目录 Docker概述 效果呈现 镜像 & 镜像仓库 & 容器 镜像 DockerHub 配置国内源加速 容器 简单的命令解读 Docker基础 常用命令 案例演示 数据卷 什么是数据卷 数据卷命令 演示环节 匿名数据卷 案例演示 自定义挂载位置 案例演示 自定义镜像 镜像结构 Dockerfile …...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...