当前位置: 首页 > news >正文

【安全体系架构】——防御深度架构

防御深度架构:

防御深度架构是一种多层次的安全模型,旨在通过在网络和系统的各个层次上部署多个安全措施,以抵御不同类型的威胁和攻击。这个模型承认单一的安全措施可能无法全面防御所有潜在威胁,因此采用了多层次的安全防御策略。防御深度架构的目标是提高整体的网络和信息安全性,以确保即使一层受到攻击,其他层次的防御仍然有效。

以下是防御深度架构的核心原则和关键要素:

多层次安全:

防御深度架构包括多个安全层次,每个层次都针对特定的威胁和攻击类型。这些层次可以包括网络层、主机层、应用程序层和数据层。

网络层安全:

在网络层,安全措施包括防火墙、入侵检测系统(IDS)、入侵防御系统(IPS)和虚拟专用网络(VPN)。防火墙用于监视和过滤网络流量,IDS和IPS用于检测和阻止入侵,VPN用于加密远程连接。

主机层安全:

在主机层,安全措施包括操作系统补丁管理、反病毒软件、主机防火墙和主机入侵检测系统(HIDS)。这些措施有助于保护主机设备免受恶意软件和攻击。

应用程序层安全:

在应用程序层,安全措施包括应用程序层防火墙、安全编码实践、身份验证和访问控制。应用程序层安全确保应用程序的安全性,包括防止SQL注入、跨站脚本攻击等。

数据层安全:

在数据层,安全措施包括数据加密、数据备份和恢复策略、数据分类和访问控制。数据层安全确保数据的保密性和完整性。

合规性和监控:

防御深度模型要求组织保持合规性,监控网络和系统活动,及时检测异常行为和安全威胁。这包括日志记录、审计和威胁情报共享。

教育和培训:

员工培训是防御深度架构中的关键组成部分。员工需要了解最佳的安全实践,以帮助预防社会工程攻击和内部威胁。

防御深度架构的好处

防御深度架构强调了多层次的安全措施的综合使用,以应对不断演变的网络威胁。它可以适用于各种网络环境,包括企业、政府、医疗和教育机构。这个模型的关键是多层次的安全控制,每一层都提供额外的保护,即使攻击者能够绕过一层安全措施,其他层次的安全控制仍然可以发挥作用。防御深度架构帮助组织建立更坚固的安全防线,以减少潜在威胁的风险。

相关文章:

【安全体系架构】——防御深度架构

防御深度架构: 防御深度架构是一种多层次的安全模型,旨在通过在网络和系统的各个层次上部署多个安全措施,以抵御不同类型的威胁和攻击。这个模型承认单一的安全措施可能无法全面防御所有潜在威胁,因此采用了多层次的安全防御策略…...

Opencv之RANSAC算法用于直线拟合及特征点集匹配详解

Opencv之RANSAC算法用于直线拟合及特征点集匹配详解 讲述Ransac拟合与最小二乘在曲线拟合上的优缺点 讲述在进行特征点匹配时,最近邻匹配与Ransac匹配的不同之处 另外,Ransac也被用于椭圆拟合、变换矩阵求解等 1. 直线拟合 1.1 原理 RANSAC(RANdom …...

Jenkins环境部署与任务构建

一、CI/CD 1、CI/CD 概念: CI/CD 是一种软件开发和交付方法,旨在加速应用程序的开发、测试和部署过程,以提高软件交付的质量和效率。 (1) 持续集成 (CI Continuous Integration): 持续集成是开发团队频繁集成其代码更改的过程。开发者将其…...

ES6 Class和Class继承

1.class的基本语法 class可以理解为是一个语法糖,将js只能通过构造函数创建实例的方法进行了补充 构造函数: function Person ({ name, age18 }) {this.name namethis.age age } new Person({name: 张三}) Class类: class Person {con…...

C++11 packaged_task

std::packaged_task 把一个方法打包成一个task扔到线程中执行&#xff0c;然后通过packaged_task中的furture等待执行结果。 void test_promise() {std::packaged_task <int()> task([]()->int {std::cout << "packaged_task begin \n" << std…...

delete、drop、truncate三兄弟

比较方面/具体命令deletetruncatedrop删除范围逐行删除&#xff08;记录行&#xff09;逐页删除&#xff08;数据页&#xff09;整张表&#xff08;数据表结构&#xff09;所属范畴数据操作语言&#xff08;DML&#xff09;数据定义语言&#xff08;DDL&#xff09;数据定义语言…...

C/C++运算优先级

文章目录 前言1.运算优先级表2.举例说明&#xff1a;总结 前言 最近复习C基础知识的时候&#xff0c;发现对这部分还是有些模糊。常用的 - &#xff0c;括号等运算符对于它们的优先级还是比较明确的。但是涉及到移位运算&#xff0c;逻辑运算这种&#xff0c;再结合四则运算…...

apache搭建静态网站,moongoose搭建网站后台,出现的跨域问题解决

文章目录 1&#xff0c;问题描述1.1&#xff0c;当网页和后台是不同服务时会产生跨域问题1.2&#xff0c;跨域问题 2&#xff0c;nginx端口转发解决跨域问题2.1&#xff0c;下载并安装nginx2.1.1&#xff0c;解压后如下所示2.1.2&#xff0c;进入解压目录后&#xff0c;执行配置…...

LiveQing视频点播流媒体RTMP推流服务功能-支持视频点播分屏大屏展示视频轮巡分组播放RMP推流直播大屏展示

LiveQing支持视频点播分屏大屏展示视频轮播分组播放RMP推流直播大屏展示 1、分屏展示2、轮巡播放3、RTMP推流视频直播和点播流媒体服务 1、分屏展示 LiveQing支持将视频点播、鉴权直播&#xff0c;拉转直播视频流&#xff0c;进行分屏播放。 2、轮巡播放 3、RTMP推流视频直播和…...

tf loss构建常用到函数

1、tf.map_fn tf.map_fn是TensorFlow中的一个函数&#xff0c;用于对给定的函数和输入进行逐元素的映射&#xff0c;其定义如下&#xff1a; tf.map_fn(fn,elems,dtypeNone,parallel_iterationsNone,back_propTrue,swap_memoryFalse,infer_shapeTrue,nameNone,fn_output_sign…...

行为型模式-备忘录模式

备忘录模式保存一个对象的某个状态&#xff0c;以便在适当的时候恢复对象。备忘录模式属于行为型模式。 意图&#xff1a;在不破坏封装性的前提下&#xff0c;捕获一个对象的内部状态&#xff0c;并在该对象之外保存这个状态。 主要解决&#xff1a;所谓备忘录模式就是在不破坏…...

Android Studio初学者实例:RecyclerView学习--模仿今日头条--续

新学期开始了&#xff0c;这篇文章收到了很多人的评论有很多地方不懂&#xff0c;所以写下了以下的文章--续篇 首先使用RecyclerView也好还是使用ListView&#xff0c;更或是GridView你都要先构思需要什么 这些东西无一例外通常都是用在列表显示下&#xff0c;那么需要一些&a…...

栈和队列的C++模拟实现

一、栈stack 1.介绍&#xff08;库里面的文档介绍&#xff09; 1. stack是一种容器适配器&#xff0c;专门用在具有后进先出操作的上下文环境中&#xff0c;其删除只能从容器的一端进行元素的插入与提取操作。 2. stack是作为容器适配器被实现的&#xff0c;容器适配器即是对…...

UE4/5:通过Blender制作BlendShape导入【UE4/5曲线、变形目标,blender形态键】

UE4/5里面&#xff0c;我们经常可以在一些骨骼模型上面看到相关的曲线&#xff0c;如Metahuman里面就是通过这个曲线来改变人物的脸部表情。 而这里笔者将教导如何去制作这种曲线。 这种曲线都是存在于骨骼模型上的&#xff0c;所以我们要么直接制作骨骼模型导入ue&#xff0…...

微信小程序进阶——后台交互

目录 一、后台准备 1.1 pom.xml 1.2 配置数据源 1.3 整合mybatis 二、前后端交互 2.1 method1 2.2 method2 2.2.1 封装request 2.2.2 头部引用util 2.2.3 编写方法 2.2.4 展示效果 三、WXS的使用 3.1 会议状态 3.1.2 引入wxs 3.1.3 修改代码 3.1.4 展示效果 3…...

二维码智慧门牌管理系统升级解决方案:突破传统,实现质检与抽检的个性化配置

文章目录 前言一、引入“独立质检”二、个性化抽检类别设定三、触发重采要素的功能升级四、升级优势与展望 前言 在数字化时代&#xff0c;智慧门牌管理系统已经成为社会管理的重要工具。为了满足各种复杂需求&#xff0c;系统升级是必然趋势。本次升级主要针对质检和抽检两大…...

《动手学深度学习 Pytorch版》 9.4 双向循环神经网络

之前的序列学习中假设的目标是在给定观测的情况下对下一个输出进行建模&#xff0c;然而也存在需要后文预测前文的情况。 9.4.1 隐马尔可夫模型中的动态规划 数学推导太复杂了&#xff0c;略。 9.4.2 双向模型 双向循环神经网络&#xff08;bidirectional RNNs&#xff09;…...

【Axure高保真原型】可视化图表图标

今天和粉丝们免费分享可视化图表图标原型模板&#xff0c;包括柱状图、条形图、环形图、散点图、水波图等常用的可视化图表图标。 【原型效果】 【原型预览】 https://axhub.im/ax9/d402c647c82f9185/#c1 【原型下载】 这个模板可以在 Axure高保真原型哦 小程序里免费下载哦…...

安装mmcv及GPU版本的pytorch及torchvision

一、先装GPU版本的pytorch和torchvision pip install torch1.9.1cu111 torchvision0.10.1cu111 torchaudio0.9.1 -f https://download.pytorch.org/whl/torch_stable.html注意&#xff1a;以上适用cuda11.1版本 如果想离线安装&#xff0c;就看这篇文章 二、安装mmcv 看这篇…...

全国342个城市往返最短通勤时间(铁路)数据

全国342个城市往返最短通勤时间&#xff08;铁路&#xff09;数据 1、时间&#xff1a;采集时间是2022年 2、来源&#xff1a;12306 3、数据说明&#xff1a;数据采集12306数据&#xff0c;整理全国342个城市往返最短通勤时间&#xff0c;本数据是铁路包含动车、高铁所有路线…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...