Simple RNN、LSTM、GRU序列模型原理
一。循环神经网络RNN
用于处理序列数据的神经网络就叫循环神经网络。序列数据说直白点就是随时间变化的数据,循环神经网络它能够根据这种数据推出下文结果。RNN是通过嵌含前一时刻的状态信息实行训练的。 RNN神经网络有3个变种,分别为Simple RNN、LSTM、GRU。


1)Simple RNN:短期记忆
Simple RNN是将上一次输出状态与这一次的输入拼接起来进行下一次训练,一直这样下去。Simple RNN只适合短期记忆,也就是Simple RNN输入的序列不能太长,这是由于随着网络层数增加梯度消失导致的,说直白点就是Simple RNN会丢失前一部分的信息。


"""Simple RNN实现IMDB电影评论分类
实现:
1.加载数据、数据预处理
2.补白
3.搭建RNN模型
4.训练、评估
"""
"""
1.加载数据、数据预处理
①加载数据:得到训练集、测试集
"""
vocabulary = 10000#设置评论常用词汇10000个单词
start_char = 1#一句话的开始
oov_char = 2#不在10000个词中的单词用OOV表示
index_from = 3#从3开始算一句话开始
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=vocabulary,start_char=start_char, oov_char=oov_char, index_from=index_from)#得到训练集与测试集
"""
②数据预处理:第1步,x_train是值,找不到键,必须将x_train变为键;第2步,由键找到单词
"""
word_index = imdb.get_word_index()#加载大词典
inverted_word_index = dict([(i + index_from, word) for (word, i) in word_index.items()])# 将大词典键与值互换位置
#正式转换数据
inverted_word_index[start_char] = "[START]"
inverted_word_index[oov_char] = "[OOV]"
# " ".join(inverted_word_index[i] for i in x_train[0])#打印第一句话
"""
2.补白:避免句子长短不一
"""
word_num = 250
x_train = pad_sequences(x_train, maxlen=word_num)
x_test = pad_sequences(x_test, maxlen=word_num)
x_train.shape
"""
3.搭建RNN模型
"""
embed_dim = 32
state_dim = 32
rnn = Sequential([Embedding(input_dim=vocabulary,output_dim=embed_dim,input_length=word_num),#Embedding的作用是降维,每次输入input_length=250词每次,将每个词拉成output_dim=32,最终高250变成了32达到了降维。一共有10000词等输入SimpleRNN(state_dim, return_sequences=False),#输出的状态向量为state_dim,return_sequences=False表示只需要最后一个状态向量Dense(1,activation='sigmoid')#Dense表示全连接层,1表示结果输出一个数就可以,activation='sigmoid'表示激活函数为sigmoid
])
"""
4.训练、评估
"""
①训练
rnn.compile(loss="binary_crossentropy",optimizer="rmsprop",metrics=["accuracy"])#loss损失函数用交叉熵表示,optimizer优化器,metrics准确率
rnn.fit(x_train, y_train,batch_size=128,epochs=5,validation_data=(x_test, y_test))#训练,validation_data为测试集
"""
②评估
"""
score, acc = rnn.evaluate(x_test, y_test, batch_size=128)
2) LSTM:长短期记忆
Simple RNN的缺点是随着序列的增长会丢失一部分前面的信息,而LSTM为了弥补这一缺陷,加入了传输带①,能够在一定程度上缓解前面序列信息的遗忘,LSTM大致可以分为5个部分,介绍如下:

①传输带:记为向量C,过去的信息就是通过这个传输带送到下一时刻,它不会损失太多信息,就是通过这条传送带来避免梯度消失的问题;
②遗忘门:门是用来控制是否让信息通过的,遗忘门顾名思义就是让一部分信息通过,一部分信息不通过。





③输入门④新值同理操作,处理完更新传输带





还是以电影分类为例,只需将
SimpleRNN(state_dim, return_sequences=False)
改为
LSTM(state_dim, return_sequences=False)
即可。
3)GRU:
图解如下:

相关文章:
Simple RNN、LSTM、GRU序列模型原理
一。循环神经网络RNN 用于处理序列数据的神经网络就叫循环神经网络。序列数据说直白点就是随时间变化的数据,循环神经网络它能够根据这种数据推出下文结果。RNN是通过嵌含前一时刻的状态信息实行训练的。 RNN神经网络有3个变种,分别为Simple RNN、LSTM、…...
【原创】java+swing+mysql生肖星座查询系统设计与实现
今天我们来开发一个比较有趣的系统,根据生日查询生肖星座,输入生日,系统根据这个日期自动计算出生肖和星座信息反馈到界面。我们还是使用javaswingmysql去实现这样的一个系统。 功能分析: 生肖星座查询系统,顾名思义…...
CentOS 环境 OpneSIPS 3.1 版本安装及使用
文章目录1. OpenSIPS 源码下载2. 工具准备3. 编译安装4. opensips-cli 工具安装5. 启动 OpenSIPS 实例1. OpenSIPS 源码下载 使用以下命令即可下载 OpenSIPS 的源码,笔者下载的是比较稳定的 3.1 版本,读者有兴趣也可前往 官方传送门 sudo git clone htt…...
SQL95 从 Products 表中检索所有的产品名称以及对应的销售总数
描述 Products 表中检索所有的产品名称:prod_name、产品id:prod_idprod_idprod_namea0001egga0002socketsa0013coffeea0003colaOrderItems代表订单商品表,订单产品:prod_id、售出数量:quantityprod_idquantitya0001105…...
平时技术积累很少,面试时又会问很多这个难题怎么破?别慌,没事看看这份Java面试指南,解决你的小烦恼!
前言技术面试是每个程序员都需要去经历的事情,随着行业的发展,新技术的不断迭代,技术面试的难度也越来越高,但是对于大多数程序员来说,工作的主要内容只是去实现各种业务逻辑,涉及的技术难度并不高…...
SQL Server 数据库的备份
为何要备份数据库? 备份 SQL Server 数据库、在备份上运行测试还原过程以及在另一个安全位置存储备份副本可防止可能的灾难性数据丢失。 备份是保护数据的唯一方法 。 使用有效的数据库备份,可从多种故障中恢复数据,例如: 介质…...
NCNN Conv量化详解1
1. NCNN的Conv量化计算流程 正常的fp32计算中,一个Conv的计算流程如下: 在NCNN Conv进行Int8计算时,计算流程如下: NCNN首先将输入(bottom_blob)和权重(weight_blob)量化成INT8,在INT8下计算卷积,然后反量化到fp32,再和未量化的bias相加,得到输出(top_blob) 输入和…...
Redis大key多key拆分方案
业务场景中经常会有各种大key多key的情况, 比如:1:单个简单的key存储的value很大2:hash, set,zset,list 中存储过多的元素(以万为单位)3:一个集群存储了上亿的…...
python的类如何使用?兔c同学一篇关于python类的博文概述
本章内容如目录 所示: 文章目录1. 创建和使用类1.1 创建第一个python 类1.2 版本差异1.3 根据类创建实例1. 访问属性2. 调用方法3. 创建多个实例2. 使用类和实例2.1 给属性指定默认值2.2 修改属性的值3. 继承3.1 子类的 __init __()3.2 给子类定义属性和方法3.3 重写…...
Day60 动态规划总结
647. 回文子串 回文的做法注定我们得从里面入手,逐渐扩散到边界 初始化:准备一个ans,找到一个回文子串加一个 dp [[0] * n for _ in range(n)]ans 0 遍历公式: 当s[i]s[j]的时候,只要里面还是回文串,就能…...
UVM仿真环境搭建
环境 本实验使用环境为: Win10平台下的Modelsim SE-64 2019.2 代码 dut代码: module dut(clk,rst_n, rxd,rx_dv,txd,tx_en); input clk; input rst_n; input[7:0] rxd; input rx_dv; output [7:0] txd; output tx_en;reg[7:0] txd; reg tx_en;always…...
Azure AI基础到实战(C#2022)-认知服务(1)
目录 Azure 认知服务概述计算机视觉概述数据隐私和安全性计算机视觉快速入门光学字符识别 (OCR)OCR APIOCR 常用功能Azure 门户准备两种部署方式OCR项目实战之车牌识别Azure 认知服务概述 Azure 认知服务是基于云的人工智能 (AI) 服务,可帮助开发人员在不具备直接的 AI 或数据…...
光栅化Triangles(笔记)
field of view (可见区域) 该角度越大,需要透视投影的角度越大,成像显示的内容越多 有Y值,则可得出成像范围 屏幕: 典型的光栅处理设备所有像素都被表示为x,y坐标轴形式 3D方块成像步骤: 先将其所在平面化为 与屏幕等长等宽的形式: 如何将一个三角形拆成像素?采样…...
【Oarcle】如何显示日本年号的日期格式 ?
语句大于一切,还需要语言吗? 1. SELECT TO_CHAR(SYSDATE,EEYY/MM/DD,NLS_CALENDAR JAPANESE IMPERIAL) from dual;结果是: 令和05/02/25 Oracle SQL文中,年月日的显示,一定要使用双引号括起来,如 select…...
57_Pandas中的json_normalize将字典列表转换为DataFrame
57_Pandas中的json_normalize将字典列表转换为DataFrame 可以使用 pandas.json_normalize() 将具有公共键的字典列表转换为 pandas.DataFrame。 由于它是一种常用的JSON格式,可以通过Web API获取,所以能够将其转换为pandas.DataFrame是非常方便的。 在…...
OpenAPI SDK组件之javassist字节码
javassist介绍 Javassist是一个开源的分析、编辑和创建Java字节码的类库,主要优点是简单,不需要了解虚拟机指令,就能动态改变类的结构,或者动态生成类。 apisdk应用javassist 在apisdk中主要依靠javassist增强开发者声明的开放…...
【LeetCode】1247. 交换字符使得字符串相同(超级简单的算法,击败100%)
有两个长度相同的字符串 s1 和 s2,且它们其中 只含有 字符 "x" 和 "y",你需要通过「交换字符」的方式使这两个字符串相同。 每次「交换字符」的时候,你都可以在两个字符串中各选一个字符进行交换。 交换只能发生在两个…...
23. 合并K个升序链表
解题思路:两种解法,一种优先级队列,一种分治优先级队列解法:以节点中存储的值进行排序依次遍历所有的链表,把链表中的节点加入到优先级队列中依次从优先级队列的弹出并删除最小的元素加入到新的链表中,直到…...
软中断与tasklet简介
一、软中断 1.1 何为软中断? Linux 系统为了解决中断处理程序执行过长的问题,将中断过程分成了两个阶段,分别是「上半部(Top Half)和下半部分(Bottom Half)」。 上半部用来快速处理中断。一…...
JUC 之 线程阻塞工具 LockSupport
——LockSupport 与 线程中断 线程中断机制 一个线程不应该由其他线程来强制中断或停止,而是应该由线程自己自行停止,所以,Thread.stop,Thread.suspend,Thread.resume 都已经被废弃 在 Java 中没有办法立即停止一条线…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
