57_Pandas中的json_normalize将字典列表转换为DataFrame
57_Pandas中的json_normalize将字典列表转换为DataFrame
可以使用 pandas.json_normalize() 将具有公共键的字典列表转换为 pandas.DataFrame。
由于它是一种常用的JSON格式,可以通过Web API获取,所以能够将其转换为pandas.DataFrame是非常方便的。
在此,对以下内容进行说明。
- 使用 pandas.DataFrame() 进行转换
- pandas.json_normalize() 的基本用法
- 更复杂的情况:arguments record_path, meta
使用 pandas.read_json() 直接读取 JSON 字符串或文件作为 pandas.DataFrame 而不是由字典或列表组成的对象。
- 56_Pandas读取 JSON 字符串/文件 (read_json)
请注意,pandas.json_normalize() 是从 pandas 1.0.0 提供的,在以前的版本中是作为 pandas.io.json.json_normalize() 提供的。从 1.2.2 开始,pandas.io.json.json_normalize() 仍然可以使用,但已弃用,并且会出现警告(FutureWarning)。
使用 pandas.DataFrame() 进行转换
以下面的字典列表为例:
import pandas as pdl_simple = [{'name': 'Alice', 'age': 25},{'name': 'Bob'}]
字典中的key键成为列标签(列名),key不存在时的元素成为缺失值NaN。
print(pd.DataFrame(l_simple))
# name age
# 0 Alice 25.0
# 1 Bob NaN
与 pandas.json_normalize() 的结果相同。
print(pd.json_normalize(l_simple))
# name age
# 0 Alice 25.0
# 1 Bob NaN
pandas.json_normalize() 的基本用法
以字典为字典值的嵌套字典列表为例。
l_nested = [{'name': 'Alice', 'age': 25, 'id': {'x': 2, 'y': 8}},{'name': 'Bob', 'id': {'x': 10, 'y': 4}}]
使用 pandas.DataFrame() 时,值字典被转换为元素。
print(pd.DataFrame(l_nested))
# name age id
# 0 Alice 25.0 {'x': 2, 'y': 8}
# 1 Bob NaN {'x': 10, 'y': 4}
使用 pandas.json_normalize() 还将嵌套字典转换为每个键的单独列。
print(pd.json_normalize(l_nested))
# name age id.x id.y
# 0 Alice 25.0 2 8
# 1 Bob NaN 10 4
嵌套部分,.默认为列名。这个分隔符可以用参数 sep 改变。
print(pd.json_normalize(l_nested, sep='_'))
# name age id_x id_y
# 0 Alice 25.0 2 8
# 1 Bob NaN 10 4
更复杂的情况:arguments record_path, meta
如果字典值是如下所示的字典列表。
l_complex = [{'label': 'X','info' : {'n': 'nx', 'm': 'mx'},'data': [{'a': 1, 'b': 2},{'a': 3, 'b': 4}]},{'label': 'Y','info' : {'n': 'ny', 'm': 'my'},'data': [{'a': 10, 'b': 20},{'a': 30, 'b': 40}]}]
默认情况下,字典列表成为一个元素。
print(pd.json_normalize(l_complex))
# label data info.n info.m
# 0 X [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}] nx mx
# 1 Y [{'a': 10, 'b': 20}, {'a': 30, 'b': 40}] ny my
如果在参数 record_path 中指定一个键,则只会转换与该键对应的值。可以使用参数 record_prefix 将前缀添加到列名。
print(pd.json_normalize(l_complex, record_path='data'))
# a b
# 0 1 2
# 1 3 4
# 2 10 20
# 3 30 40print(pd.json_normalize(l_complex, record_path='data', record_prefix='data_'))
# data_a data_b
# 0 1 2
# 1 3 4
# 2 10 20
# 3 30 40
如果要转换其他键值,请使用参数 meta 指定它。可以使用参数 meta_prefix 将前缀添加到列名。
print(pd.json_normalize(l_complex, record_path='data'))
# a b
# 0 1 2
# 1 3 4
# 2 10 20
# 3 30 40print(pd.json_normalize(l_complex, record_path='data', record_prefix='data_'))
# data_a data_b
# 0 1 2
# 1 3 4
# 2 10 20
# 3 30 40
如果要转换其他键值,请使用参数 meta 指定它。可以使用参数 meta_prefix 将前缀添加到列名。
print(pd.json_normalize(l_complex, record_path='data',meta='label'))
# a b label
# 0 1 2 X
# 1 3 4 X
# 2 10 20 Y
# 3 30 40 Yprint(pd.json_normalize(l_complex, record_path='data',meta='label', meta_prefix='meta_'))
# a b meta_label
# 0 1 2 X
# 1 3 4 X
# 2 10 20 Y
# 3 30 40 Y
如果 meta 指定的键对值是一个字典,则可以在列表 [[, ], …] 中指定子键。默认情况下,列名是 .,但在这里你可以用参数 sep 更改分隔符。
print(pd.json_normalize(l_complex, record_path='data',meta='info'))
# a b info
# 0 1 2 {'n': 'nx', 'm': 'mx'}
# 1 3 4 {'n': 'nx', 'm': 'mx'}
# 2 10 20 {'n': 'ny', 'm': 'my'}
# 3 30 40 {'n': 'ny', 'm': 'my'}print(pd.json_normalize(l_complex, record_path='data',meta=[['info', 'n'], ['info', 'm']]))
# a b info.n info.m
# 0 1 2 nx mx
# 1 3 4 nx mx
# 2 10 20 ny my
# 3 30 40 ny myprint(pd.json_normalize(l_complex, record_path='data',meta=[['info', 'n'], ['info', 'm']],sep='_'))
# a b info_n info_m
# 0 1 2 nx mx
# 1 3 4 nx mx
# 2 10 20 ny my
# 3 30 40 ny my
要将此示例中的所有元素转换为 pandas.DataFrame,请设置:
print(pd.json_normalize(l_complex, record_path='data',meta=['label', ['info', 'n'], ['info', 'm']],sep='_'))
# a b label info_n info_m
# 0 1 2 X nx mx
# 1 3 4 X nx mx
# 2 10 20 Y ny my
# 3 30 40 Y ny my
请注意,即使单独指定子键,它也必须是像 meta=[[, ]] 这样的列表列表。如果 meta=[, ] 则出错。
print(pd.json_normalize(l_complex, record_path='data',meta=[['info', 'n']]))
# a b info.n
# 0 1 2 nx
# 1 3 4 nx
# 2 10 20 ny
# 3 30 40 ny# print(pd.json_normalize(l_complex, record_path='data',
# meta=['info', 'n']))
# KeyError: "Try running with errors='ignore' as key 'n' is not always present"
相关文章:
57_Pandas中的json_normalize将字典列表转换为DataFrame
57_Pandas中的json_normalize将字典列表转换为DataFrame 可以使用 pandas.json_normalize() 将具有公共键的字典列表转换为 pandas.DataFrame。 由于它是一种常用的JSON格式,可以通过Web API获取,所以能够将其转换为pandas.DataFrame是非常方便的。 在…...
OpenAPI SDK组件之javassist字节码
javassist介绍 Javassist是一个开源的分析、编辑和创建Java字节码的类库,主要优点是简单,不需要了解虚拟机指令,就能动态改变类的结构,或者动态生成类。 apisdk应用javassist 在apisdk中主要依靠javassist增强开发者声明的开放…...
【LeetCode】1247. 交换字符使得字符串相同(超级简单的算法,击败100%)
有两个长度相同的字符串 s1 和 s2,且它们其中 只含有 字符 "x" 和 "y",你需要通过「交换字符」的方式使这两个字符串相同。 每次「交换字符」的时候,你都可以在两个字符串中各选一个字符进行交换。 交换只能发生在两个…...

23. 合并K个升序链表
解题思路:两种解法,一种优先级队列,一种分治优先级队列解法:以节点中存储的值进行排序依次遍历所有的链表,把链表中的节点加入到优先级队列中依次从优先级队列的弹出并删除最小的元素加入到新的链表中,直到…...
软中断与tasklet简介
一、软中断 1.1 何为软中断? Linux 系统为了解决中断处理程序执行过长的问题,将中断过程分成了两个阶段,分别是「上半部(Top Half)和下半部分(Bottom Half)」。 上半部用来快速处理中断。一…...
JUC 之 线程阻塞工具 LockSupport
——LockSupport 与 线程中断 线程中断机制 一个线程不应该由其他线程来强制中断或停止,而是应该由线程自己自行停止,所以,Thread.stop,Thread.suspend,Thread.resume 都已经被废弃 在 Java 中没有办法立即停止一条线…...
常用数据结构总结-Java版
常用数据结构总结(Java版) C/Java/Python 数据结构大比较 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Dokzp1HQ-1677329125447)(assets/image-20220116142815859.png)] array 同一种类型数据的集合,其实数组…...

【基础算法】二分例题(我在哪?)
🌹作者:云小逸 📝个人主页:云小逸的主页 📝Github:云小逸的Github 🤟motto:要敢于一个人默默的面对自己,强大自己才是核心。不要等到什么都没有了,才下定决心去做。种一颗树,最好的时间是十年前…...

怕上当?来看这份网络钓鱼和诈骗技术趋势
网络钓鱼和诈骗:当前的欺诈类型 网络钓鱼 钓鱼者可以攻击任何在线服务——银行、社交网络、政府门户网站、在线商店、邮件服务、快递公司等——中的证书。但是,顶级品牌的客户往往面临更大风险,因为相比小品牌,人们更喜欢使用和…...
2023年全国最新保安员精选真题及答案6
百分百题库提供保安员考试试题、保安职业资格考试预测题、保安员考试真题、保安职业资格证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 61.关于保安员职业资格条件说法正确的是()。 A:必须考试合格…...
unity热更新新方案,ILRuntime
ILRuntime 是一个独立的、跨平台的 .NET Runtime,可用于在 Unity 中实现热更功能。使用 ILRuntime,您可以在游戏运行时加载和执行 C# 脚本,而不需要重新编译整个项目。 以下是一些使用 ILRuntime 的基本步骤: 在 Unity Asset St…...
【J1】【队列】报数游戏
题目描述 有 n 个小朋友围成一圈玩游戏,小朋友从 1 至 n 编号,2 号小朋友坐在 1 号小朋友的顺时针方向,3 号小朋友坐在 2 号小朋友的顺时针方向,……,1 号小朋友坐在 n 号小朋友的顺时针方向。 游戏开始,…...

《程序员的自我修养》阅读笔记
文章目录【第2部分】静态链接1 编译过程2 编辑器的工作流程3 链接——模块的拼接4 目标文件目标文件中的段(section)ELF文件结构5 静态链接1 空间与地址分配2 符号解析与重定位【第3部分】装载与动态链接1 装载的方式2 进程的启动3 为什么需要动态链接&a…...

【跟着ChatGPT学深度学习】ChatGPT带我入门深度学习
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...
软工2023个人作业一——阅读和提问
项目内容这个作业属于哪个课程2023年北航敏捷软件工程这个作业的要求在哪里个人作业-阅读和提问我在这个课程的目标是学习并掌握现代软件开发和项目管理技术,体验敏捷开发工作流程这个作业在哪个具体方面帮助我实现目标通读《构建之法》,了解软件工程中基…...

【Redis】线程模型:Redis是单线程还是多线程?
【Redis】线程模型:Redis是单线程还是多线程? 文章目录【Redis】线程模型:Redis是单线程还是多线程?Redis 是单线程吗?Redis 单线程模式是怎样的?Redis 采用单线程为什么还这么快?Redis 6.0 之前…...
FSM(有限状态机)
FSM有限状态机FSM创建控制有限状态机的脚本设置FSM状态机下的各个状态添加测试类FSM的优点FSM 虽然Unity已经有了动画状态机,但是为了代码的开放封闭原则,这时FSM有限状态机的作用就凸显了出来。 创建控制有限状态机的脚本 先创建一个脚本用来控制有限…...

奇妙的background-clip:text
我们在学习CSS3时,一个背景属性background-clip用来对背景进行裁剪,即指定背景绘制的区域,通常我们使用的几个属性如下:值说明border-box默认值。背景绘制在边框方框内(剪切成边框方框)。padding-box背景绘…...

Vmware虚拟机无法联通主机解决方法二
昨天在遇到了VMware 虚拟机无法联通主机,导致我在CentOS-7 搭建的伪Hadoop3 服务,无法访问管理平台,使用将网络编辑器修改为“桥接”模式解决。今天在学习HBase 时,昨天的问题又重新了,我通过SSH 工具MobaXterm 都无法…...

Boost资料整理备忘
Boost资料整理备忘 网络资源 书籍: The Boost C Libraries官方文档 Boost Library Documentation random boost.randomBoost随机库的简单使用:Boost.Random(STL通用)tutorialstd::random boost::asio Boost.Asio 网络编程 - 基本原理Boost.Asio DocBoost定时器 网…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...