当前位置: 首页 > news >正文

图论06-【无权无向】-图的遍历并查集Union Find-力扣695为例

文章目录

  • 1. 代码仓库
  • 2. 思路
    • 2.1 UF变量设计
    • 2.2 UF合并两个集合
    • 2.3 查找当前顶点的父节点 find(element)
  • 3. 完整代码

1. 代码仓库

https://github.com/Chufeng-Jiang/Graph-Theory

2. 思路

2.1 UF变量设计

在这里插入图片描述

parent数组保存着每个节点所指向的父节点的索引,初始值为当前顶点编号,指向自己。

后期在合并的时候均指向其合并的另一个元素的父节点,也就是p->a, q->q,合并p和q时,改变q的指向,q->a.

最终a下面挂两个节点,分别为p, q.

//parent数组中保存着每个节点所指向的父节点的索引
private int[] parent;sz数组来保存每个根节点所代表的子树中元素的数量 
private int[] sz;

2.2 UF合并两个集合

查找两个元素的父节点,父节点相同则属于同一个集合

public void unionElements(int p, int q) {int pRoot = find(p); // 找到p的父节点int qRoot = find(q); // 找到q的父节点if (pRoot == qRoot) // 如果pq的父节点相同,说明在同一个集合内return;parent[pRoot] = qRoot; //如果不相同,将p的父节点挂到q的父节点下,进行合并sz[qRoot] += sz[pRoot]; //q的集合大小合并
}

2.3 查找当前顶点的父节点 find(element)

递归查找父节点,只要不满足p = parent[p],就肯定没有到达最上层。find(parent[p])为查找p节点的

public int find(int p) {if (p != parent[p]) //还没找到根节点parent[p] = find(parent[p]); //递归实现//p = parent[p]时,就是父节点return parent[p]; 
}

在这里插入图片描述

3. 完整代码

public class Union_Find {class UF {private int[] parent; //parent数组中保存着每个节点所指向的父节点的索引private int[] sz;public UF(int n) {parent = new int[n];sz = new int[n];for (int i = 0; i < n; i++) {parent[i] = i; //初始化的时候当前节点的父节点都是自己sz[i] = 1; //当前所属集合的大小}}// 不断去查询自己的父亲节点, 直到到达根节点// 根节点的特点: parent[p] == ppublic int find(int p) {if (p != parent[p]) //还没找到根节点parent[p] = find(parent[p]); //递归实现return parent[p]; //终于找到根节点}public boolean isConnected(int p, int q) {return find(p) == find(q);}public void unionElements(int p, int q) {int pRoot = find(p); //找到p的父节点int qRoot = find(q); //找到q的父节点if (pRoot == qRoot)//如果pq的父节点相同,说明在同一个集合内return;parent[pRoot] = qRoot; //如果不相同,将p的父节点挂到q的父节点下,进行合并sz[qRoot] += sz[pRoot]; //q的集合大小合并}public int size(int p) {return sz[find(p)];}}private int[][] dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};private int R, C;public int maxAreaOfIsland(int[][] grid) {if (grid == null) return 0;R = grid.length;if (R == 0) return 0;C = grid[0].length;if (C == 0) return 0;UF uf = new UF(R * C);for (int v = 0; v < R * C; v++) {int x = v / C, y = v % C;if (grid[x][y] == 1)for (int d = 0; d < 4; d++) {int nextx = x + dirs[d][0], nexty = y + dirs[d][1];if (inArea(nextx, nexty) && grid[nextx][nexty] == 1) {int next = nextx * C + nexty;uf.unionElements(v, next);}}}int res = 0;for (int v = 0; v < R * C; v++) {int x = v / C, y = v % C;if (grid[x][y] == 1)res = Math.max(res, uf.size(v)); //遍历找到最大的size}return res;}private boolean inArea(int x, int y) {return x >= 0 && x < R && y >= 0 && y < C;}
}

相关文章:

图论06-【无权无向】-图的遍历并查集Union Find-力扣695为例

文章目录 1. 代码仓库2. 思路2.1 UF变量设计2.2 UF合并两个集合2.3 查找当前顶点的父节点 find(element) 3. 完整代码 1. 代码仓库 https://github.com/Chufeng-Jiang/Graph-Theory 2. 思路 2.1 UF变量设计 parent数组保存着每个节点所指向的父节点的索引&#xff0c;初始值为…...

什么是卷积神经网络?解决了什么问题?

什么是卷积神经网络&#xff1f; 卷积神经网络&#xff08;Convolutional Neural Network&#xff0c;CNN&#xff09;是一种深度神经网络模型&#xff0c;主要用于图像识别、语音识别和自然语言处理等任务。它通过卷积层、池化层和全连接层来实现特征提取和分类。 解决了什么问…...

Golang数组:全面指南与实际示例

揭示Golang数组的威力&#xff1a;从基础到高级技巧 Golang数组是数据存储的基本构建块&#xff0c;为开发人员提供了多种可能性。在这篇正式的博客文章中&#xff0c;我们将探讨Golang数组&#xff0c;从基础知识到高级技巧。通过实际示例和正式的语气&#xff0c;我们将揭示…...

程序连接oracle查询数据的环境配置

连接oracle 数据库真麻烦&#xff0c;还是MySQL方便 Oracle Instant Client 这个东西的版本跟oracle的版本是有讲究的&#xff0c;引用文档的说明 Oracle 标准的客户端-服务器网络互操作性允许不同版本的 Oracle 客户端和 Oracle 数据库之间的连接。有关经过认证的配置&#…...

【BIGRU预测】基于双向门控循环单元的多变量时间序列预测(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

RDD算子操作(基本算子和常见算子)

目录 一、基本算子 1.map算子 2.flatMap算子 3.filter算子 4.foreach算子 5.saveAsTextFile算子 6.redueceByKey算子 二、常用Transformation算子 1.mapValues算子 2.groupBy算子 3.distinct算子 4.union算子 5.join算子 6.intersection算子 7.glom算子 8.groupByKey算…...

互联网Java工程师面试题·Java 面试篇·第五弹

目录 79、适配器模式和装饰器模式有什么区别&#xff1f; 80、适配器模式和代理模式之前有什么不同&#xff1f; 81、什么是模板方法模式&#xff1f; 82、什么时候使用访问者模式&#xff1f; 83、什么时候使用组合模式&#xff1f; 84、继承和组合之间有什么不同&#…...

常见的测试理论面试问题

请解释软件生存周期是什么&#xff1f; 软件生存周期是指从软件开发到维护的过程&#xff0c;包括可行性研究、需求分析、软件设计、编码、测试、发布和维护等活动。这个过程也被称为“生命周期模型”。 软件测试的目的是什么&#xff1f; 软件测试的目的是发现软件中的错误…...

把JS中的map方法玩出花来

一 map是什么 map(callbackFn) map(callbackFn, thisArg)map() 方法是一个迭代方法。它为数组中的每个元素调用一次提供的 callbackFn 函数&#xff0c;并用结果构建一个新数组。 参数 callbackFn 数组中的每个元素执行的函数。它的返回值作为一个元素被添加为新数组中。该…...

液晶显示计算器(延时程序)

#include "delay.h" /*------------------------------------------------ uS延时函数&#xff0c;含有输入参数 unsigned char t&#xff0c;无返回值 unsigned char 是定义无符号字符变量&#xff0c;其值的范围是 0~255 这里使用晶振12M&#xff0c;精确延时请…...

线性代数2:梯队矩阵形式

图片来自 Europeana on Unsplash 一、前言 欢迎阅读的系列文章的第二篇文章&#xff0c;内容是线性代数的基础知识&#xff0c;线性代数是机器学习背后的基础数学。在我之前的文章中&#xff0c;我介绍了线性方程和系统、矩阵符号和行缩减运算。本文将介绍梯队矩阵形式&#xf…...

【JavaEE】网络编程(网络编程基础、Socket套接字)

一、网络编程基础 1.1、什么是网络编程&#xff1f; 网络编程&#xff0c;指网络上的主机&#xff0c;通过不同的进程&#xff0c;以编程的方式实现网络通信&#xff08;或称为网络数据传输&#xff09; 注意&#xff1a;我们只要满足进程不同就行&#xff1b;所以即便是同一…...

Node学习笔记之模块化

一、介绍 1.1 什么是模块化与模块 ? 将一个复杂的程序文件依据一定规则&#xff08;规范&#xff09;拆分成多个文件的过程称之为 模块化 其中拆分出的 每个文件就是一个模块 &#xff0c;模块的内部数据是私有的&#xff0c;不过模块可以暴露内部数据以便其他 模块使用 1…...

用matlab求解线性规划

文章目录 1、用单纯形表求解线性规划绘制单纯形表求解&#xff1a; 2、用matlab求解线性规划——linprog()函数问题&#xff1a;补充代码&#xff1a;显示出完整的影子价格向量 1、用单纯形表求解线性规划 求解线性规划 m i n − 3 x 1 − 4 x 2 x 3 min -3x_1-4x_2x_3 min−…...

antd获取/更改form表单数据(表单域数据)

创建ref引用 formRef React.createRef();表单和ref绑定 //ref{this.formRef} 先给Form <Form ref{this.formRef} name"control-ref" onFinish{this.onFinish}><Form.Item name"name" label"Name" rules{[{ required: true }]}>…...

Go学习第三章——运算符与进制

Go学习第三章——运算符与进制 1 算术运算符2 关系运算符3 逻辑运算符4 赋值运算符5 其他运算符5.1 位运算符5.2 跟指针有关的运算符 6 运算符的优先级7 获取用户终端输入8 进制转换8.1 进制基本使用8.2 进制之间的转换8.3 原码 反码 补码8.4 位运算符详解 运算符是—种特殊的符…...

H3C IMC dynamiccontent.properties.xhtm 远程命令执行

我举手向苍穹&#xff0c;并非一定要摘星取月&#xff0c;我只是需要这个向上的、永不臣服的姿态。 构造payload&#xff1a; /imc/javax.faces.resource/dynamiccontent.properties.xhtml pfdrtsc&lnprimefaces&pfdriduMKljPgnOTVxmOB%2BH6%2FQEPW9ghJMGL3PRdkfmbii…...

【技能树笔记】网络篇——练习题解析(八)

目录 前言 一、LAN技术 1.1 堆叠与集群 1.2 MSTP的特点 二、WAN技术 2.1 PPP链路建立 2.2 PPPoE 2.3 组播 2.3.1 组播的IP 2.3.2 组播分发树 2.3.3 组播协议 三、IPv6基础 3.1 IPv6地址 3.2 IPv6协议 3.3 IPv6过渡技术 总结 &#x1f308;嗨&#xff01;我是Filotimo__&#x1…...

laravel框架介绍(二)

方法1.windows 可以直接下载 Composer-Setup.exe 方法2.配置php.exe目录环境变量,下载 composer.phar和php.exe平级目录, 新建 composer.bat 文件编辑以下内容 php "%~dp0composer.phar" %* 运行composer.bat ,出现版本号为成功 执行 composer self-update 以保持 Co…...

USB学习(1):USB基础之接口类型、协议标准、引脚分布、架构、时序和数据格式

连接计算机外围设备最简单的方法是通过USB(通用串行总线)。USB是即插即用接口&#xff0c;可以将扫描仪、打印机、数码相机、闪存驱动器等计算机外围设备连接到计算机上。本篇文章就来介绍一下USB的一些基础知识&#xff0c;包括。 文章目录 1 接口类型和标准规范2 引脚分布3 …...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; Spring框架的核心容器是IoC&#xff08;控制反转&#xff09;容器。它的主要作用是管理对…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...